Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3742076531748415306310 ~2006
37421170375238963851911 ~2008
3742223339748444667910 ~2006
3742259219748451843910 ~2006
3742307423748461484710 ~2006
3742346771748469354310 ~2006
3742381523748476304710 ~2006
3742671923748534384710 ~2006
3742837919748567583910 ~2006
37429115212245746912711 ~2007
3743021063748604212710 ~2006
3743267471748653494310 ~2006
3743354579748670915910 ~2006
3743433731748686746310 ~2006
37434576238984298295311 ~2008
3743462711748692542310 ~2006
3743482199748696439910 ~2006
37435285192994822815311 ~2007
3743590211748718042310 ~2006
3743625911748725182310 ~2006
3743783831748756766310 ~2006
37437867498236330847911 ~2008
37439223892995137911311 ~2007
3744003671748800734310 ~2006
3744132299748826459910 ~2006
Exponent Prime Factor Digits Year
374415337729953227016112 ~2010
3744346943748869388710 ~2006
3744370319748874063910 ~2006
3744427523748885504710 ~2006
3744518471748903694310 ~2006
37448704873744870487111 ~2008
37450747993745074799111 ~2008
37450979332247058759911 ~2007
3745102139749020427910 ~2006
3745281971749056394310 ~2006
37458733878990096128911 ~2008
37458967998990152317711 ~2008
37460727193746072719111 ~2008
37463401972997072157711 ~2007
3746344139749268827910 ~2006
3746368343749273668710 ~2006
37463796532247827791911 ~2007
37463796972247827818311 ~2007
3746489111749297822310 ~2006
3746500139749300027910 ~2006
3746543159749308631910 ~2006
374658572914237025770312 ~2009
37468155592997452447311 ~2007
37469079372248144762311 ~2007
37469520292997561623311 ~2007
Exponent Prime Factor Digits Year
3747196391749439278310 ~2006
3747375011749475002310 ~2006
3747544331749508866310 ~2006
3747651263749530252710 ~2006
3747665819749533163910 ~2006
3747682259749536451910 ~2006
37478283412248697004711 ~2007
37480665793748066579111 ~2008
37480880812998470464911 ~2007
3748105799749621159910 ~2006
3748218923749643784710 ~2006
3748438931749687786310 ~2006
3748587191749717438310 ~2006
37487546992999003759311 ~2007
3748920671749784134310 ~2006
374894158923993226169712 ~2009
3748997123749799424710 ~2006
37490156812249409408711 ~2007
37491052672999284213711 ~2007
3749184203749836840710 ~2006
3749210099749842019910 ~2006
3749327243749865448710 ~2006
3749357543749871508710 ~2006
3749469863749893972710 ~2006
3749527031749905406310 ~2006
Exponent Prime Factor Digits Year
37498426372249905582311 ~2007
3749957663749991532710 ~2006
375002394126250167587112 ~2010
3750029891750005978310 ~2006
3750236111750047222310 ~2006
3750351023750070204710 ~2006
3750444539750088907910 ~2006
3750680183750136036710 ~2006
3750768419750153683910 ~2006
37507744993750774499111 ~2008
3750852923750170584710 ~2006
37509009972250540598311 ~2007
3750934151750186830310 ~2006
3750993839750198767910 ~2006
37510274213000821936911 ~2007
3751349639750269927910 ~2006
37516012513751601251111 ~2008
37516761012251005660711 ~2007
3751732139750346427910 ~2006
37517850913751785091111 ~2008
3751799699750359939910 ~2006
3751860971750372194310 ~2006
37521027976003364475311 ~2008
37521468293001717463311 ~2007
37521672972251300378311 ~2007
Home
5.247.179 digits
e-mail
25-12-14