Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
103792364536227541871911 ~2010
103801526416228091584711 ~2010
103802135098304170807311 ~2011
103803109432076062188711 ~2009
103803806632076076132711 ~2009
103808251792076165035911 ~2009
1038129389331143881679112 ~2012
103816746232076334924711 ~2009
103817752312076355046311 ~2009
1038190854718687435384712 ~2012
103821994816229319688711 ~2010
103824213592076484271911 ~2009
103830808336229848499911 ~2010
103833402776230004166311 ~2010
103835650792076713015911 ~2009
103836001312076720026311 ~2009
103836751432076735028711 ~2009
103839451192076789023911 ~2009
103854252232077085044711 ~2009
103859907112077198142311 ~2009
103861655392077233107911 ~2009
103862440792077248815911 ~2009
1038707236343625703924712 ~2012
103871193712077423874311 ~2009
103871554912077431098311 ~2009
Exponent Prime Factor Dig. Year
103875691912077513838311 ~2009
103875991192077519823911 ~2009
103877052016232623120711 ~2010
103877067112077541342311 ~2009
103884957232077699144711 ~2009
103890544976233432698311 ~2010
103891120312077822406311 ~2009
1038951358310389513583112 ~2011
1038962072324935089735312 ~2012
103897069378311765549711 ~2011
103909048192078180963911 ~2009
103914368992078287379911 ~2009
103919512432078390248711 ~2009
1039202533910392025339112 ~2011
103923585478313886837711 ~2011
103928387176235703230311 ~2010
103930824712078616494311 ~2009
103931192512078623850311 ~2009
1039316814710393168147112 ~2011
103944257818315540624911 ~2011
103945001992078900039911 ~2009
103951574032079031480711 ~2009
1039539639141581585564112 ~2012
103959571078316765685711 ~2011
103959883912079197678311 ~2009
Exponent Prime Factor Dig. Year
103960305832079206116711 ~2009
103960386232079207724711 ~2009
103965532912079310658311 ~2009
103966048912079320978311 ~2009
103966200976237972058311 ~2010
103972239012867...51895914 2024
103978446592079568931911 ~2009
103988889536239333371911 ~2010
103989395632079787912711 ~2009
1039905501116638488017712 ~2011
103990694512079813890311 ~2009
103991274376239476462311 ~2010
103991762992079835259911 ~2009
103996401232079928024711 ~2009
103997265592079945311911 ~2009
103998124432079962488711 ~2009
103998920992079978419911 ~2009
103998975592079979511911 ~2009
104000749912080014998311 ~2009
104006125312080122506311 ~2009
104024680312080493606311 ~2009
104034210232080684204711 ~2009
104041558432080831168711 ~2009
104042102632080842052711 ~2009
104045619832080912396711 ~2009
Exponent Prime Factor Dig. Year
104046145792080922915911 ~2009
104047996312080959926311 ~2009
104053499098324279927311 ~2011
104055924232081118484711 ~2009
104059718392081194367911 ~2009
104062044616243722676711 ~2010
104062690912081253818311 ~2009
104063130592081262611911 ~2009
104063703232081274064711 ~2009
104071219736244273183911 ~2010
104073406618325872528911 ~2011
104074780016244486800711 ~2010
104077220512081544410311 ~2009
1040783055716652528891312 ~2011
104081404192081628083911 ~2009
104087138512081742770311 ~2009
104090788798327263103311 ~2011
104092115632081842312711 ~2009
104095609192081912183911 ~2009
104097468112081949362311 ~2009
104099972392081999447911 ~2009
104100069832082001396711 ~2009
104105540392082110807911 ~2009
104110583512082211670311 ~2009
104112395512082247910311 ~2009
Home
4.768.925 digits
e-mail
25-05-04