Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
95559325791911186515911 ~2009
95560318431911206368711 ~2009
95569019991911380399911 ~2009
95569740231911394804711 ~2009
95570607591911412151911 ~2009
95571956397645756511311 ~2010
95572308975734338538311 ~2010
95593820577647505645711 ~2010
95602952031912059040711 ~2009
95614946991912298939911 ~2009
95615006031912300120711 ~2009
95623496631912469932711 ~2009
95625748911912514978311 ~2009
95627014431912540288711 ~2009
956293061313388102858312 ~2011
95631486711912629734311 ~2009
95634305991912686119911 ~2009
95636967711912739354311 ~2009
95638615791912772315911 ~2009
95639729631912794592711 ~2009
95642886117651430888911 ~2010
95648742831912974856711 ~2009
95649109197651928735311 ~2010
95649875335738992519911 ~2010
95650916031913018320711 ~2009
Exponent Prime Factor Dig. Year
95650969911913019398311 ~2009
95654377431913087548711 ~2009
95660362735739621763911 ~2010
95663154831913263096711 ~2009
95669599311913391986311 ~2009
95670540711913410814311 ~2009
956707977115307327633712 ~2011
95681882217654550576911 ~2010
95683772511913675450311 ~2009
95689774431913795488711 ~2009
95692348615741540916711 ~2010
95697399231913947984711 ~2009
95699042775741942566311 ~2010
95704939791914098795911 ~2009
95707016631914140332711 ~2009
95712848511914256970311 ~2009
957135347917228436262312 ~2011
95714043711914280874311 ~2009
95718275391914365507911 ~2009
95720663031914413260711 ~2009
95725152591914503051911 ~2009
95730168615743810116711 ~2010
95734210017658736800911 ~2010
95737205991914744119911 ~2009
95738779617659102368911 ~2010
Exponent Prime Factor Dig. Year
95742098599574209859111 ~2011
95745496431914909928711 ~2009
95748814191914976283911 ~2009
957495808922979899413712 ~2012
95751451791915029035911 ~2009
95753036031915060720711 ~2009
95754390111915087802311 ~2009
957549493917235890890312 ~2011
95755514775745330886311 ~2010
95765936815745956208711 ~2010
95766542991915330859911 ~2009
95767098615746025916711 ~2010
95768536191915370723911 ~2009
95771330575746279834311 ~2010
95776907991915538159911 ~2009
95778716031915574320711 ~2009
95779230111915584602311 ~2009
95787498711915749974311 ~2009
95788800711915776014311 ~2009
95796127815747767668711 ~2010
95796684711915933694311 ~2009
95797444311915948886311 ~2009
95801088711916021774311 ~2009
958049248961315151929712 ~2013
95805559311916111186311 ~2009
Exponent Prime Factor Dig. Year
95806479111916129582311 ~2009
95810368639581036863111 ~2011
95811515719581151571111 ~2011
95815598031916311960711 ~2009
958163232144075508676712 ~2012
95820604191916412083911 ~2009
95822502831916450056711 ~2009
95837752311916755046311 ~2009
958444794715335116715312 ~2011
95846661831916933236711 ~2009
95847229135750833747911 ~2010
958503193315336051092912 ~2011
95850587511917011750311 ~2009
95853030111917060602311 ~2009
95861407135751684427911 ~2010
95865057111917301142311 ~2009
95876699631917533992711 ~2009
95877826191917556523911 ~2009
95879308975752758538311 ~2010
95882206791917644135911 ~2009
95887635111917752702311 ~2009
95894336877671546949711 ~2010
95899338897671947111311 ~2010
95903852631918077052711 ~2009
95904763911918095278311 ~2009
Home
4.768.925 digits
e-mail
25-05-04