Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
936409484944947655275312 ~2012
93643088511872861770311 ~2009
93644023431872880468711 ~2009
93654303231873086064711 ~2009
936547329714984757275312 ~2011
93658306791873166135911 ~2009
93663848031873276960711 ~2009
93664289991873285799911 ~2009
93673576191873471523911 ~2009
936892372716864062708712 ~2011
93692368191873847363911 ~2009
93694730511873894610311 ~2009
93698672391873973447911 ~2009
93700001815622000108711 ~2010
93711443815622686628711 ~2010
93716570215622994212711 ~2010
93719380977497550477711 ~2010
93728550775623713046311 ~2010
93730111617498408928911 ~2010
93732363111874647262311 ~2009
937360005116872480091912 ~2011
93736925991874738519911 ~2009
93737228631874744572711 ~2009
937402045735621277736712 ~2012
93744843231874896864711 ~2009
Exponent Prime Factor Dig. Year
93746787777499743021711 ~2010
93762051591875241031911 ~2009
93763269831875265396711 ~2009
93763681911875273638311 ~2009
93764479191875289583911 ~2009
93765570831875311416711 ~2009
93766411191875328223911 ~2009
93770168991875403379911 ~2009
93772169631875443392711 ~2009
93774672591875493451911 ~2009
93774948831875498976711 ~2009
93775013631875500272711 ~2009
93775418697502033495311 ~2010
93781345431875626908711 ~2009
93783047391875660947911 ~2009
93783326335626999579911 ~2010
937863154145017431396912 ~2012
93787472391875749447911 ~2009
93791100799379110079111 ~2011
93792207975627532478311 ~2010
93792306111875846122311 ~2009
93794562591875891251911 ~2009
93796720191875934403911 ~2009
93807783711876155674311 ~2009
93809799831876195996711 ~2009
Exponent Prime Factor Dig. Year
93811003575628660214311 ~2010
93811712031876234240711 ~2009
93813406791876268135911 ~2009
93818308311876366166311 ~2009
93821086431876421728711 ~2009
93822204111876444082311 ~2009
93822215391876444307911 ~2009
93824474991876489499911 ~2009
938245184324394374791912 ~2012
93824676831876493536711 ~2009
93826247631876524952711 ~2009
93828066597506245327311 ~2010
93834895135630093707911 ~2010
938397623313137566726312 ~2011
93845926215630755572711 ~2010
93848318031876966360711 ~2009
93849943191876998863911 ~2009
93850818591877016371911 ~2009
93854414511877088290311 ~2009
93856103031877122060711 ~2009
93857976231877159524711 ~2009
93858439191877168783911 ~2009
93861488991877229779911 ~2009
93862355391877247107911 ~2009
93867091335632025479911 ~2010
Exponent Prime Factor Dig. Year
93867463311877349266311 ~2009
93870008391877400167911 ~2009
93870288231877405764711 ~2009
938717172722529212144912 ~2012
93876027711877520554311 ~2009
93876668335632600099911 ~2010
93876734997510138799311 ~2010
93884247111877684942311 ~2009
93884253111877685062311 ~2009
93890202415633412144711 ~2010
93895021191877900423911 ~2009
93895927911877918558311 ~2009
93898193575633891614311 ~2010
93899639631877992792711 ~2009
93903444711878068894311 ~2009
939048807161977221268712 ~2013
939126540745078073953712 ~2012
93916018375634961102311 ~2010
939255487922542131709712 ~2012
93933195711878663914311 ~2009
93934171791878683435911 ~2009
93935170791878703415911 ~2009
93940992231878819844711 ~2009
93943813617515505088911 ~2010
939446131337577845252112 ~2012
Home
4.768.925 digits
e-mail
25-05-04