Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
96348755991926975119911 ~2009
96349772511926995450311 ~2009
96353238111927064762311 ~2009
96355664391927113287911 ~2009
96355727031927114540711 ~2009
96360135799636013579111 ~2011
96360341391927206827911 ~2009
96364836831927296736711 ~2009
96365024391927300487911 ~2009
96366584575781995074311 ~2010
96371515911927430318311 ~2009
96373440717709875256911 ~2010
96377238711927544774311 ~2009
96377540391927550807911 ~2009
96378366231927567324711 ~2009
96383869935783032195911 ~2010
96392833431927856668711 ~2009
96395804511927916090311 ~2009
96398218399639821839111 ~2011
96398562679639856267111 ~2011
96400957791928019155911 ~2009
96401130711928022614311 ~2009
96402226431928044528711 ~2009
96404679711928093594311 ~2009
96413753391928275067911 ~2009
Exponent Prime Factor Dig. Year
96417626391928352527911 ~2009
96419779791928395595911 ~2009
96421646991928432939911 ~2009
96428038317714243064911 ~2010
96428407431928568148711 ~2009
96434998191928699963911 ~2009
96437098191928741963911 ~2009
96437915935786274955911 ~2010
96450096111929001922311 ~2009
96457269775787436186311 ~2010
96457600311929152006311 ~2009
96464770911929295418311 ~2009
96465453231929309064711 ~2009
96474733917717978712911 ~2010
96478008591929560171911 ~2009
964805143713507272011912 ~2011
96488446311929768926311 ~2009
96489343911929786878311 ~2009
964902769117368249843912 ~2011
96491352111929827042311 ~2009
964950287313509304022312 ~2011
96500832591930016651911 ~2009
96500867391930017347911 ~2009
96503226831930064536711 ~2009
96505621431930112428711 ~2009
Exponent Prime Factor Dig. Year
96511212477720896997711 ~2010
96511368975790682138311 ~2010
96514949031930298980711 ~2009
96517138575791028314311 ~2010
96517571631930351432711 ~2009
96517662591930353251911 ~2009
96524377191930487543911 ~2009
96525684831930513696711 ~2009
96529212591930584251911 ~2009
96534539631930690792711 ~2009
96536077911930721558311 ~2009
96537978591930759571911 ~2009
96538345791930766915911 ~2009
965439694315447035108912 ~2011
96544983831930899676711 ~2009
96562471575793748294311 ~2010
965678401713519497623912 ~2011
96572397831931447956711 ~2009
96576233511931524670311 ~2009
96580540791931610815911 ~2009
96584202591931684051911 ~2009
96590960391931819207911 ~2009
96595678575795740714311 ~2010
96604234911932084698311 ~2009
96608817535796529051911 ~2010
Exponent Prime Factor Dig. Year
96612060919661206091111 ~2011
96618532911932370658311 ~2009
96620808711932416174311 ~2009
966216591169567594559312 ~2013
96631285431932625708711 ~2009
96634186791932683735911 ~2009
96635496111932709922311 ~2009
96635916831932718336711 ~2009
96639664911932793298311 ~2009
96639964935798397895911 ~2010
96647017311932940346311 ~2009
96652848231933056964711 ~2009
966536252323196870055312 ~2012
96661689711933233794311 ~2009
96665878377733270269711 ~2010
966667900771533424651912 ~2013
96669392511933387850311 ~2009
96676339191933526783911 ~2009
96678173815800690428711 ~2010
96682613631933652272711 ~2009
96683417775801005066311 ~2010
96687628215801257692711 ~2010
96697274391933945487911 ~2009
96703935111934078702311 ~2009
96704587191934091743911 ~2009
Home
4.724.182 digits
e-mail
25-04-13