Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
70078584711401571694311 ~2008
70081058031401621160711 ~2008
70086385134205183107911 ~2009
700876897315419291740712 ~2010
70088826797008882679111 ~2010
70089331315607146504911 ~2009
70090449231401808984711 ~2008
70091017615607281408911 ~2009
70092058311401841166311 ~2008
70092262911401845258311 ~2008
700938343923831903692712 ~2011
70100334475608026757711 ~2009
70101722934206103375911 ~2009
70103765391402075307911 ~2008
70104192711402083854311 ~2008
70106211174206372670311 ~2009
70106475415608518032911 ~2009
70106929431402138588711 ~2008
70107937911402158758311 ~2008
70111572711402231454311 ~2008
70116084197011608419111 ~2010
70116484614206989076711 ~2009
70118978031402379560711 ~2008
70122368774207342126311 ~2009
70123153075609852245711 ~2009
Exponent Prime Factor Dig. Year
70132904631402658092711 ~2008
70138141791402762835911 ~2008
70151534991403030699911 ~2008
70151614311403032286311 ~2008
70152555197015255519111 ~2010
70156362231403127244711 ~2008
70159336974209560218311 ~2009
70159840134209590407911 ~2009
70162663431403253268711 ~2008
70163737191403274743911 ~2008
70167159895613372791311 ~2009
70170513111403410262311 ~2008
70174150191403483003911 ~2008
70174573791403491475911 ~2008
70177512591403550251911 ~2008
70177770231403555404711 ~2008
70177909379824907311911 ~2010
70177980797017798079111 ~2010
70180296591403605931911 ~2008
70181398615614511888911 ~2009
70182293534210937611911 ~2009
70187459717018745971111 ~2010
70188256311403765126311 ~2008
70191800815615344064911 ~2009
70192461831403849236711 ~2008
Exponent Prime Factor Dig. Year
70193062431403861248711 ~2008
70194778911403895578311 ~2008
70204022875616321829711 ~2009
70205296734212317803911 ~2009
70207504791404150095911 ~2008
70209932334212595939911 ~2009
70212798797021279879111 ~2010
70213377231404267544711 ~2008
702166050716851985216912 ~2011
70219822075617585765711 ~2009
70221129917022112991111 ~2010
70221667431404433348711 ~2008
70224852591404497051911 ~2008
70227364911404547298311 ~2008
702274992716854599824912 ~2011
70231455231404629104711 ~2008
70232808414213968504711 ~2009
70233851991404677039911 ~2008
70235432031404708640711 ~2008
70236475311404729506311 ~2008
70237919774214275186311 ~2009
70238525511404770510311 ~2008
702406786311238508580912 ~2010
70241671191404833423911 ~2008
70242213711404844274311 ~2008
Exponent Prime Factor Dig. Year
70242323391404846467911 ~2008
70243541631404870832711 ~2008
70244968191404899363911 ~2008
70246497831404929956711 ~2008
70246900911404938018311 ~2008
70248397431404967948711 ~2008
70248660711404973214311 ~2008
70251043431405020868711 ~2008
70253071997025307199111 ~2010
70255501311405110026311 ~2008
70255667031405113340711 ~2008
70257191991405143839911 ~2008
70258971711405179434311 ~2008
70259206191405184123911 ~2008
70264977711405299554311 ~2008
70265675631405313512711 ~2008
70277969597027796959111 ~2010
70278755214216725312711 ~2009
70279043334216742599911 ~2009
70281541791405630835911 ~2008
70285400631405708012711 ~2008
70288706031405774120711 ~2008
70300590591406011811911 ~2008
70304456991406089139911 ~2008
70308273614218496416711 ~2009
Home
4.768.925 digits
e-mail
25-05-04