Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
26309598171578575890311 ~2006
26310693172104855453711 ~2006
26311880336314851279311 ~2007
2631188459526237691910 ~2005
2631226931526245386310 ~2005
2631280919526256183910 ~2005
26312840238946365678311 ~2008
26313394571578803674311 ~2006
26315351472631535147111 ~2006
2631612239526322447910 ~2005
26317431112105394488911 ~2006
2631815363526363072710 ~2005
2631871691526374338310 ~2005
2631917063526383412710 ~2005
2631929351526385870310 ~2005
26320067531579204051911 ~2006
26320225992632022599111 ~2006
2632055171526411034310 ~2005
2632063919526412783910 ~2005
2632314983526462996710 ~2005
2632341611526468322310 ~2005
2632454663526490932710 ~2005
2632470299526494059910 ~2005
26325413771579524826311 ~2006
26326554914738779883911 ~2007
Exponent Prime Factor Digits Year
2632713851526542770310 ~2005
2632721879526544375910 ~2005
2632805771526561154310 ~2005
2632820819526564163910 ~2005
26328572174212571547311 ~2007
2632876523526575304710 ~2005
2632991843526598368710 ~2005
2633028371526605674310 ~2005
2633105591526621118310 ~2005
2633154479526630895910 ~2005
2633164559526632911910 ~2005
2633172011526634402310 ~2005
2633348279526669655910 ~2005
2633527343526705468710 ~2005
263357230719488435071912 ~2008
2633620919526724183910 ~2005
26336263571580175814311 ~2006
26337189735794181740711 ~2007
2633767943526753588710 ~2005
2633835623526767124710 ~2005
26339308571580358514311 ~2006
26339969176321592600911 ~2007
2634042539526808507910 ~2005
2634172379526834475910 ~2005
26341730337902519099111 ~2007
Exponent Prime Factor Digits Year
263420510313171025515112 ~2008
26343457931580607475911 ~2006
2634450911526890182310 ~2005
2634548723526909744710 ~2005
26346383411580783004711 ~2006
2634682679526936535910 ~2005
26346862731580811763911 ~2006
26347209171580832550311 ~2006
2634732491526946498310 ~2005
2634810803526962160710 ~2005
2634840899526968179910 ~2005
2634905111526981022310 ~2005
26350180336324043279311 ~2007
26351445731581086743911 ~2006
2635151243527030248710 ~2005
2635166783527033356710 ~2005
2635226123527045224710 ~2005
26352705412108216432911 ~2006
2635375199527075039910 ~2005
2635468403527093680710 ~2005
2635526123527105224710 ~2005
2635693691527138738310 ~2005
2635769723527153944710 ~2005
26358736372108698909711 ~2006
26359570973690339935911 ~2007
Exponent Prime Factor Digits Year
26361628194745093074311 ~2007
26362555192109004415311 ~2006
26363145896327155013711 ~2007
2636366231527273246310 ~2005
2636387471527277494310 ~2005
26364632812109170624911 ~2006
2636530511527306102310 ~2005
26367320714218771313711 ~2007
26367346372109387709711 ~2006
2636809211527361842310 ~2005
2636810399527362079910 ~2005
2636880731527376146310 ~2005
26369313772109545101711 ~2006
2637098423527419684710 ~2005
2637100643527420128710 ~2005
2637232679527446535910 ~2005
2637255683527451136710 ~2005
2637291491527458298310 ~2005
2637391859527478371910 ~2005
2637506051527501210310 ~2005
2637572711527514542310 ~2005
263765972939564895935112 ~2009
26376618611582597116711 ~2006
2637688871527537774310 ~2005
2637693083527538616710 ~2005
Home
5.247.179 digits
e-mail
25-12-14