Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2595056291519011258310 ~2005
2595157511519031502310 ~2005
2595235931519047186310 ~2005
25953621495709796727911 ~2007
2595556823519111364710 ~2005
2595590099519118019910 ~2005
2595624191519124838310 ~2005
2595648851519129770310 ~2005
25956694032595669403111 ~2006
2595692003519138400710 ~2005
2595716099519143219910 ~2005
2595916523519183304710 ~2005
25959511571557570694311 ~2006
2595978779519195755910 ~2005
2596007759519201551910 ~2005
2596023011519204602310 ~2005
2596025039519205007910 ~2005
2596107863519221572710 ~2005
2596155911519231182310 ~2005
25961566571557693994311 ~2006
2596244999519248999910 ~2005
25963794131557827647911 ~2006
2596551263519310252710 ~2005
2596664159519332831910 ~2005
259682683112464768788912 ~2008
Exponent Prime Factor Digits Year
25968591412077487312911 ~2006
2596890239519378047910 ~2005
2596897631519379526310 ~2005
2596980359519396071910 ~2005
259701554920256721282312 ~2008
2597121311519424262310 ~2005
2597136851519427370310 ~2005
25974601331558476079911 ~2006
25975133571558508014311 ~2006
2597517011519503402310 ~2005
2597768111519553622310 ~2005
2597793923519558784710 ~2005
2597796731519559346310 ~2005
2597889971519577994310 ~2005
25979748531558784911911 ~2006
2598121979519624395910 ~2005
2598128399519625679910 ~2005
2598182663519636532710 ~2005
25982940531558976431911 ~2006
2598358943519671788710 ~2005
2598706151519741230310 ~2005
25987284714677711247911 ~2007
2598729323519745864710 ~2005
2598761939519752387910 ~2005
25988002011559280120711 ~2006
Exponent Prime Factor Digits Year
2598914963519782992710 ~2005
2599034183519806836710 ~2005
25991090771559465446311 ~2006
2599331411519866282310 ~2005
259951741916636911481712 ~2008
25995497536238919407311 ~2007
2599580471519916094310 ~2005
2599684883519936976710 ~2005
2599740779519948155910 ~2005
2599936931519987386310 ~2005
2599977899519995579910 ~2005
2600024711520004942310 ~2005
2600057363520011472710 ~2005
2600082539520016507910 ~2005
2600144159520028831910 ~2005
2600295311520059062310 ~2005
26003110731560186643911 ~2006
2600355431520071086310 ~2005
2600403191520080638310 ~2005
2600454539520090907910 ~2005
2600471039520094207910 ~2005
2600473451520094690310 ~2005
2600490311520098062310 ~2005
26005338674680960960711 ~2007
2600555291520111058310 ~2005
Exponent Prime Factor Digits Year
26006252212080500176911 ~2006
2600793731520158746310 ~2005
2600794403520158880710 ~2005
26008040212080643216911 ~2006
2600903759520180751910 ~2005
2600981723520196344710 ~2005
2600985899520197179910 ~2005
2601076403520215280710 ~2005
2601095279520219055910 ~2005
2601130019520226003910 ~2005
2601130943520226188710 ~2005
26011993394682158810311 ~2007
260124337123411190339112 ~2009
2601292163520258432710 ~2005
2601329051520265810310 ~2005
2601371159520274231910 ~2005
2601393803520278760710 ~2005
2601420023520284004710 ~2005
26014252131560855127911 ~2006
26015521971560931318311 ~2006
2601611471520322294310 ~2005
2601710879520342175910 ~2005
26017714931561062895911 ~2006
2601776591520355318310 ~2005
2601913859520382771910 ~2005
Home
5.247.179 digits
e-mail
25-12-14