Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
64906720933894403255911 ~2009
64908093591298161871911 ~2008
64908147231298162944711 ~2008
64909691391298193827911 ~2008
649101576129858672500712 ~2011
64911430191298228603911 ~2008
64911651173894699070311 ~2009
64913101911298262038311 ~2008
64913886711298277734311 ~2008
64914584815193166784911 ~2009
64916353431298327068711 ~2008
64917813111298356262311 ~2008
64917820911298356418311 ~2008
64920354013895221240711 ~2009
649216513310387464212912 ~2010
64922361231298447224711 ~2008
64926236533895574191911 ~2009
64927828675194226293711 ~2009
64933420213896005212711 ~2009
64933957933896037475911 ~2009
64935616311298712326311 ~2008
64937251911298745038311 ~2008
64937676115195014088911 ~2009
64942038231298840764711 ~2008
64943486991298869739911 ~2008
Exponent Prime Factor Dig. Year
64944001375195520109711 ~2009
64945341591298906831911 ~2008
64946676591298933531911 ~2008
64947774831298955496711 ~2008
64948325173896899510311 ~2009
64949331111298986622311 ~2008
64950119511299002390311 ~2008
649523065771447537227112 ~2012
64954108191299082163911 ~2008
64957200733897432043911 ~2009
64957673631299153472711 ~2008
64959250431299185008711 ~2008
64962113031299242260711 ~2008
64963228013897793680711 ~2009
64965654013897939240711 ~2009
64966109991299322199911 ~2008
64966472333897988339911 ~2009
64966612191299332243911 ~2008
64967025711299340514311 ~2008
64967969511299359390311 ~2008
64973700231299474004711 ~2008
64974071391299481427911 ~2008
64975025031299500500711 ~2008
64975081516497508151111 ~2009
64977116596497711659111 ~2009
Exponent Prime Factor Dig. Year
64979387095198350967311 ~2009
64980492231299609844711 ~2008
64980753415198460272911 ~2009
64983480111299669602311 ~2008
64983763311299675266311 ~2008
64984563373899073802311 ~2009
64984563831299691276711 ~2008
649848244322094840306312 ~2011
64984950711299699014311 ~2008
64985315116498531511111 ~2009
64985610711299712214311 ~2008
64986588111299731762311 ~2008
64988554311299771086311 ~2008
64990546311299810926311 ~2008
64994858031299897160711 ~2008
64994966511299899330311 ~2008
64995293391299905867911 ~2008
64998605813899916348711 ~2009
65001947511300038950311 ~2008
65003838591300076771911 ~2008
650065735719501972071112 ~2011
65008174191300163483911 ~2008
65010060591300201211911 ~2008
65010406613900624396711 ~2009
650126158310402018532912 ~2010
Exponent Prime Factor Dig. Year
65013858831300277176711 ~2008
650176309127307404982312 ~2011
65019727911300394558311 ~2008
65023382991300467659911 ~2008
65024428191300488563911 ~2008
65024618631300492372711 ~2008
65026751991300535039911 ~2008
65031491511300629830311 ~2008
65035111911300702238311 ~2008
65039545333902372719911 ~2009
65043102591300862051911 ~2008
65044782831300895656711 ~2008
65045135031300902700711 ~2008
65045814591300916291911 ~2008
65046072831300921456711 ~2008
65048078391300961567911 ~2008
65051274111301025482311 ~2008
65053665591301073311911 ~2008
65054865831301097316711 ~2008
65055315231301106304711 ~2008
65055534973903332098311 ~2009
65055912831301118256711 ~2008
65055948831301118976711 ~2008
65056323595204505887311 ~2009
65056789791301135795911 ~2008
Home
4.768.925 digits
e-mail
25-05-04