Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
21313731192131373119111 ~2006
2131388639426277727910 ~2004
21314265711705141256911 ~2005
21316294911705303592911 ~2005
21316568275542307750311 ~2007
2131683791426336758310 ~2004
21317212971279032778311 ~2005
213173733120464678377712 ~2008
2131745723426349144710 ~2004
2131767503426353500710 ~2004
2131807043426361408710 ~2004
2131926059426385211910 ~2004
21319558211279173492711 ~2005
2131984859426396971910 ~2004
2132116631426423326310 ~2004
21321747531279304851911 ~2005
2132203919426440783910 ~2004
2132271539426454307910 ~2004
2132371511426474302310 ~2004
2132412251426482450310 ~2004
2132467703426493540710 ~2004
2132516339426503267910 ~2004
2132525711426505142310 ~2004
2132549591426509918310 ~2004
21326349471706107957711 ~2005
Exponent Prime Factor Digits Year
2132819963426563992710 ~2004
2132822819426564563910 ~2004
21328336931279700215911 ~2005
2132909939426581987910 ~2004
2132944283426588856710 ~2004
213294600126875119612712 ~2008
2132951939426590387910 ~2004
2132971499426594299910 ~2004
2132999399426599879910 ~2004
2133052739426610547910 ~2004
21331615338532646132111 ~2007
21331757211279905432711 ~2005
21331778571279906714311 ~2005
2133258059426651611910 ~2004
21333048411706643872911 ~2005
21333819675120116720911 ~2007
21333919132986748678311 ~2006
2133488639426697727910 ~2004
2133516851426703370310 ~2004
2133671219426734243910 ~2004
21338178591707054287311 ~2005
2133885503426777100710 ~2004
21338988595121357261711 ~2007
2133907619426781523910 ~2004
21340489272134048927111 ~2006
Exponent Prime Factor Digits Year
2134095791426819158310 ~2004
2134149911426829982310 ~2004
21341655771280499346311 ~2005
2134197503426839500710 ~2004
2134296623426859324710 ~2004
213437278110244989348912 ~2007
2134417151426883430310 ~2004
2134483163426896632710 ~2004
21344900211280694012711 ~2005
2134574303426914860710 ~2004
213458848110246024708912 ~2007
2134658219426931643910 ~2004
21346750011280805000711 ~2005
2134690583426938116710 ~2004
2134811639426962327910 ~2004
2134871363426974272710 ~2004
2134960739426992147910 ~2004
2134988759426997751910 ~2004
21350080913843014563911 ~2006
213510694314091705823912 ~2008
21351476592135147659111 ~2006
21351483411708118672911 ~2005
2135212379427042475910 ~2004
2135328791427065758310 ~2004
2135338619427067723910 ~2004
Exponent Prime Factor Digits Year
2135443679427088735910 ~2004
21354732111708378568911 ~2005
2135501939427100387910 ~2004
2135534363427106872710 ~2004
21355501211281330072711 ~2005
2135744843427148968710 ~2004
21358430411281505824711 ~2005
2135878571427175714310 ~2004
2136016139427203227910 ~2004
2136024503427204900710 ~2004
2136092111427218422310 ~2004
213613853966647522416912 ~2009
2136151763427230352710 ~2004
21361954971708956397711 ~2005
2136199979427239995910 ~2004
21363382632136338263111 ~2006
2136340799427268159910 ~2004
2136353783427270756710 ~2004
2136415199427283039910 ~2004
2136448883427289776710 ~2004
2136478439427295687910 ~2004
2136531011427306202310 ~2004
2136539843427307968710 ~2004
2136611819427322363910 ~2004
2136676571427335314310 ~2004
Home
5.187.277 digits
e-mail
25-11-17