Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4500665891900133178310 ~2006
4500747011900149402310 ~2006
4500769103900153820710 ~2006
45009442132700566527911 ~2008
4500974759900194951910 ~2006
4501039139900207827910 ~2006
45010524737201683956911 ~2009
45011119572700667174311 ~2008
45011281613600902528911 ~2008
45011348998102042818311 ~2009
4501385159900277031910 ~2006
45014990813601199264911 ~2008
4501523879900304775910 ~2006
4501529999900305999910 ~2006
4502039831900407966310 ~2006
4502173583900434716710 ~2006
45024806837203969092911 ~2009
4502624771900524954310 ~2006
4502639243900527848710 ~2006
4502718911900543782310 ~2006
45027444293602195543311 ~2008
4502760263900552052710 ~2006
45030287278105451708711 ~2009
4503184019900636803910 ~2006
45034686172702081170311 ~2008
Exponent Prime Factor Digits Year
450375127779266022475312 ~2011
4503754991900750998310 ~2006
4503764183900752836710 ~2006
45039117077206258731311 ~2009
4504083131900816626310 ~2006
4504101659900820331910 ~2006
4504429571900885914310 ~2006
45044764012702685840711 ~2008
45045441172702726470311 ~2008
4504572491900914498310 ~2006
4504590143900918028710 ~2006
45050614793604049183311 ~2008
45051606372703096382311 ~2008
4505254751901050950310 ~2006
4505429231901085846310 ~2006
4505544383901108876710 ~2006
4505580743901116148710 ~2006
4506315923901263184710 ~2006
4506332459901266491910 ~2006
4506337079901267415910 ~2006
4506405131901281026310 ~2006
45065343372703920602311 ~2008
450655402315322283678312 ~2009
4506670079901334015910 ~2006
4506693791901338758310 ~2006
Exponent Prime Factor Digits Year
45067813132704068787911 ~2008
450684462121632854180912 ~2010
45068903172704134190311 ~2008
4507098059901419611910 ~2006
4507110551901422110310 ~2006
45073322932704399375911 ~2008
45073718777211795003311 ~2009
4507534259901506851910 ~2006
45077270993606181679311 ~2008
4507917299901583459910 ~2006
45082294372704937662311 ~2008
4508257571901651514310 ~2006
4508327591901665518310 ~2006
4508341583901668316710 ~2006
45084549434508454943111 ~2008
4508510843901702168710 ~2006
45086691314508669131111 ~2008
4508887931901777586310 ~2006
45089395994508939599111 ~2008
4509370403901874080710 ~2006
4509382799901876559910 ~2006
45094546878117018436711 ~2009
45094723613607577888911 ~2008
4509475871901895174310 ~2006
4509485219901897043910 ~2006
Exponent Prime Factor Digits Year
4509581159901916231910 ~2006
45097879394509787939111 ~2008
45098437332705906239911 ~2008
4509845591901969118310 ~2006
45098471412705908284711 ~2008
4509924491901984898310 ~2006
4510123571902024714310 ~2006
4510372463902074492710 ~2006
4510557119902111423910 ~2006
4510629671902125934310 ~2006
45106676393608534111311 ~2008
4510692383902138476710 ~2006
4510725839902145167910 ~2006
4511364839902272967910 ~2006
45114073493609125879311 ~2008
4511541299902308259910 ~2006
4511591723902318344710 ~2006
4511597459902319491910 ~2006
45116911376316367591911 ~2008
45117818993609425519311 ~2008
4511874023902374804710 ~2006
451196689710828720552912 ~2009
4512034259902406851910 ~2006
4512082559902416511910 ~2006
4512623723902524744710 ~2006
Home
4.768.925 digits
e-mail
25-05-04