Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
481078619915394515836912 ~2010
4811113511962222702310 ~2007
48111237012886674220711 ~2008
4811428571962285714310 ~2007
48114313337698290132911 ~2009
4811697251962339450310 ~2007
4811732603962346520710 ~2007
4811868263962373652710 ~2007
481188547353893117297712 ~2011
4812274823962454964710 ~2007
4812366743962473348710 ~2007
48124937878662488816711 ~2009
48125926493850074119311 ~2008
4813180331962636066310 ~2007
481326020312514476527912 ~2009
4813487603962697520710 ~2007
48136172172888170330311 ~2008
4813628003962725600710 ~2007
48136872132888212327911 ~2008
481379260925994480088712 ~2010
4813826243962765248710 ~2007
4813992863962798572710 ~2007
48141769034814176903111 ~2008
4814243939962848787910 ~2007
48142835532888570131911 ~2008
Exponent Prime Factor Digits Year
4815057911963011582310 ~2007
4815192779963038555910 ~2007
4815223739963044747910 ~2007
48152470572889148234311 ~2008
4815264683963052936710 ~2007
4815318419963063683910 ~2007
48154377713852350216911 ~2008
4815492023963098404710 ~2007
48156159794815615979111 ~2008
48157052834815705283111 ~2008
4815711359963142271910 ~2007
4815907511963181502310 ~2007
4815917831963183566310 ~2007
4816357751963271550310 ~2007
481669807138533584568112 ~2011
48169715412890182924711 ~2008
48172003572890320214311 ~2008
481735385920232886207912 ~2010
48175300013854024000911 ~2008
4818403631963680726310 ~2007
48192273532891536411911 ~2008
4819387799963877559910 ~2007
4819590071963918014310 ~2007
4819715843963943168710 ~2007
4819812911963962582310 ~2007
Exponent Prime Factor Digits Year
4819850699963970139910 ~2007
4819931411963986282310 ~2007
48200519412892031164711 ~2008
4820076251964015250310 ~2007
4820270723964054144710 ~2007
4820302523964060504710 ~2007
4820393183964078636710 ~2007
482113873310606505212712 ~2009
4821415811964283162310 ~2007
4821551123964310224710 ~2007
4821598511964319702310 ~2007
48219850013857588000911 ~2008
4822022039964404407910 ~2007
4822083803964416760710 ~2007
4822460459964492091910 ~2007
48226359198680744654311 ~2009
48227179372893630762311 ~2008
4822747343964549468710 ~2007
48228458932893707535911 ~2008
4822925963964585192710 ~2007
48232422732893945363911 ~2008
4823708891964741778310 ~2007
4823814491964762898310 ~2007
4823833583964766716710 ~2007
48238886332894333179911 ~2008
Exponent Prime Factor Digits Year
482393757711577450184912 ~2009
4824070403964814080710 ~2007
4824086831964817366310 ~2007
48241007812894460468711 ~2008
4824643199964928639910 ~2007
4825094303965018860710 ~2007
4825117343965023468710 ~2007
482515423112545401000712 ~2009
48254901914825490191111 ~2008
48255298313860423864911 ~2008
48256356434825635643111 ~2008
4825954439965190887910 ~2007
4825967171965193434310 ~2007
4826035163965207032710 ~2007
482603906311582493751312 ~2009
4826155403965231080710 ~2007
48261887237721901956911 ~2009
4826331743965266348710 ~2007
4826372459965274491910 ~2007
4826418263965283652710 ~2007
4826453591965290718310 ~2007
4826775539965355107910 ~2007
4827117023965423404710 ~2007
4827537191965507438310 ~2007
4827543443965508688710 ~2007
Home
4.724.182 digits
e-mail
25-04-13