Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
469170742930026927545712 ~2010
4691966711938393342310 ~2007
469231946914076958407112 ~2009
46929409394692940939111 ~2008
4693092851938618570310 ~2007
46931293078447632752711 ~2009
46932016372815920982311 ~2008
4693217339938643467910 ~2007
4693260263938652052710 ~2007
4693292783938658556710 ~2007
46933382273754670581711 ~2008
46934040412816042424711 ~2008
46935143813754811504911 ~2008
4693754339938750867910 ~2007
4693755239938751047910 ~2007
4693902743938780548710 ~2007
46939359012816361540711 ~2008
46939905413755192432911 ~2008
46940660812816439648711 ~2008
4694098763938819752710 ~2007
4694165711938833142310 ~2007
469418670110327210742312 ~2009
4694237291938847458310 ~2007
4694290151938858030310 ~2007
4694435243938887048710 ~2007
Exponent Prime Factor Digits Year
469448507911266764189712 ~2009
46947234434694723443111 ~2008
4694776739938955347910 ~2007
4694826959938965391910 ~2007
4695171191939034238310 ~2007
4695286451939057290310 ~2007
4695353231939070646310 ~2007
4695427799939085559910 ~2007
4695455651939091130310 ~2007
4695581711939116342310 ~2007
46956154976573861695911 ~2009
469578492110330726826312 ~2009
46958493593756679487311 ~2008
4696179179939235835910 ~2007
4696443431939288686310 ~2007
469644746323482237315112 ~2010
46965196793757215743311 ~2008
4696624811939324962310 ~2007
4696666979939333395910 ~2007
4696795403939359080710 ~2007
46968621972818117318311 ~2008
46968704273757496341711 ~2008
4697006591939401318310 ~2007
4697045471939409094310 ~2007
469717241311273213791312 ~2009
Exponent Prime Factor Digits Year
4697294663939458932710 ~2007
4697671679939534335910 ~2007
4698826091939765218310 ~2007
46988562434698856243111 ~2008
4699154783939830956710 ~2007
46992781212819566872711 ~2008
4699281803939856360710 ~2007
46993473772819608426311 ~2008
46996807732819808463911 ~2008
4699806239939961247910 ~2007
4699976579939995315910 ~2007
4700117231940023446310 ~2007
4700263511940052702310 ~2007
47002753812820165228711 ~2008
4700330819940066163910 ~2007
4700490083940098016710 ~2007
4700597939940119587910 ~2007
4700966639940193327910 ~2007
4701349871940269974310 ~2007
47014363932820861835911 ~2008
47017577693761406215311 ~2008
47018196377522911419311 ~2009
4701851579940370315910 ~2007
4701940751940388150310 ~2007
4702013219940402643910 ~2007
Exponent Prime Factor Digits Year
47025311932821518715911 ~2008
47026222732821573363911 ~2008
4702626611940525322310 ~2007
4702753271940550654310 ~2007
4702854839940570967910 ~2007
47028554532821713271911 ~2008
47031626573762530125711 ~2008
4703263403940652680710 ~2007
47032791012821967460711 ~2008
4703453831940690766310 ~2007
470380504722578264225712 ~2010
4703825699940765139910 ~2007
47038396972822303818311 ~2008
4703878391940775678310 ~2007
4704009071940801814310 ~2007
470410317127283798391912 ~2010
47041108132822466487911 ~2008
4704139019940827803910 ~2007
4704324899940864979910 ~2007
4704639671940927934310 ~2007
4704721019940944203910 ~2007
4704973979940994795910 ~2007
470500999310351021984712 ~2009
47050931213764074496911 ~2008
4705098263941019652710 ~2007
Home
4.724.182 digits
e-mail
25-04-13