Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4444993583888998716710 ~2006
44452775114445277511111 ~2008
4445351951889070390310 ~2006
44455587372667335242311 ~2008
4445653631889130726310 ~2006
44457427874445742787111 ~2008
4445847551889169510310 ~2006
4445977271889195454310 ~2006
4446152279889230455910 ~2006
4446185351889237070310 ~2006
4446240839889248167910 ~2006
4446257303889251460710 ~2006
4446280271889256054310 ~2006
4446668111889333622310 ~2006
4446883271889376654310 ~2006
444724299713341728991112 ~2009
4447385843889477168710 ~2006
444769846124907111381712 ~2010
44477049593558163967311 ~2008
4447804463889560892710 ~2006
4447975271889595054310 ~2006
44482081373558566509711 ~2008
44482181212668930872711 ~2008
4448381123889676224710 ~2006
444850387925801322498312 ~2010
Exponent Prime Factor Digits Year
4448606951889721390310 ~2006
4448661383889732276710 ~2006
4448790971889758194310 ~2006
4448886131889777226310 ~2006
4449089423889817884710 ~2006
44492530939788356804711 ~2009
4449371963889874392710 ~2006
444942803314238169705712 ~2009
4449995243889999048710 ~2006
4450200971890040194310 ~2006
4450275023890055004710 ~2006
44502941812670176508711 ~2008
4450868459890173691910 ~2006
4450918319890183663910 ~2006
44510164132670609847911 ~2008
44511691372670701482311 ~2008
4451425271890285054310 ~2006
445152094328489734035312 ~2010
44516688532671001311911 ~2008
4451887439890377487910 ~2006
44521190532671271431911 ~2008
4452382079890476415910 ~2006
4452465383890493076710 ~2006
445256677310686160255312 ~2009
44532760972671965658311 ~2008
Exponent Prime Factor Digits Year
4453331699890666339910 ~2006
4453575383890715076710 ~2006
445363571327612541420712 ~2010
44536753132672205187911 ~2008
4453830383890766076710 ~2006
4454198603890839720710 ~2006
445456432116927344419912 ~2009
4454626283890925256710 ~2006
4454730743890946148710 ~2006
44548468132672908087911 ~2008
4454865923890973184710 ~2006
4455098471891019694310 ~2006
4455101723891020344710 ~2006
4455287339891057467910 ~2006
4455491039891098207910 ~2006
445572095366835814295112 ~2011
44557782972673466978311 ~2008
44559399194455939919111 ~2008
4456146899891229379910 ~2006
4456181039891236207910 ~2006
44568152899804993635911 ~2009
4456980611891396122310 ~2006
4457105771891421154310 ~2006
4457362691891472538310 ~2006
4458005231891601046310 ~2006
Exponent Prime Factor Digits Year
44580595812674835748711 ~2008
4458173459891634691910 ~2006
44584426337133508212911 ~2009
44585069532675104171911 ~2008
445855184916942497026312 ~2009
4458710339891742067910 ~2006
4458829031891765806310 ~2006
4459077803891815560710 ~2006
44591051532675463091911 ~2008
4459191371891838274310 ~2006
4459432871891886574310 ~2006
4459467119891893423910 ~2006
4459650119891930023910 ~2006
44597319617135571137711 ~2009
4459829519891965903910 ~2006
4460321039892064207910 ~2006
4460452319892090463910 ~2006
4460640479892128095910 ~2006
4460776811892155362310 ~2006
4460859563892171912710 ~2006
4461442211892288442310 ~2006
4461571223892314244710 ~2006
4461594023892318804710 ~2006
44616122273569289781711 ~2008
4461794171892358834310 ~2006
Home
4.724.182 digits
e-mail
25-04-13