Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3248664719649732943910 ~2005
3248990099649798019910 ~2005
3249009563649801912710 ~2005
3249122171649824434310 ~2005
3249187559649837511910 ~2005
3249332591649866518310 ~2005
3249410831649882166310 ~2005
3249468671649893734310 ~2005
3249600383649920076710 ~2005
3249627131649925426310 ~2005
3249632891649926578310 ~2005
3249842171649968434310 ~2005
3249932639649986527910 ~2005
3250212851650042570310 ~2005
3250263011650052602310 ~2005
3250353311650070662310 ~2005
32504566795850822022311 ~2008
3250573283650114656710 ~2005
325058421713002336868112 ~2008
3250647131650129426310 ~2005
3250649999650129999910 ~2005
3250703279650140655910 ~2005
325073914741609461081712 ~2010
3250855571650171114310 ~2005
32508978294551256960711 ~2007
Exponent Prime Factor Digits Year
32509360215201497633711 ~2008
3250975151650195030310 ~2005
32510109075201617451311 ~2008
32510875971950652558311 ~2006
325109713913004388556112 ~2008
32511826734551655742311 ~2007
32512266795852208022311 ~2008
3251302811650260562310 ~2005
32513739892601099191311 ~2007
3251470823650294164710 ~2005
3251523911650304782310 ~2005
3251609423650321884710 ~2005
32516366572601309325711 ~2007
3251707919650341583910 ~2005
32517345112601387608911 ~2007
3251826191650365238310 ~2005
3252039431650407886310 ~2005
3252126959650425391910 ~2005
3252189599650437919910 ~2005
3252326711650465342310 ~2005
32525043892602003511311 ~2007
32525078934553511050311 ~2007
3252579779650515955910 ~2005
3252606011650521202310 ~2005
32526324971951579498311 ~2006
Exponent Prime Factor Digits Year
3252651659650530331910 ~2005
3252696119650539223910 ~2005
3252711419650542283910 ~2005
3252803663650560732710 ~2005
3252858131650571626310 ~2005
32528795715855183227911 ~2008
3252961931650592386310 ~2005
32529685974554156035911 ~2007
32530396192602431695311 ~2007
32530546993253054699111 ~2007
3253204919650640983910 ~2005
3253303811650660762310 ~2005
325334125126026730008112 ~2009
3253547879650709575910 ~2005
3253705943650741188710 ~2005
32537949971952276998311 ~2006
3253796159650759231910 ~2005
32538137992603051039311 ~2007
32538372011952302320711 ~2006
32538593171952315590311 ~2006
3253901279650780255910 ~2005
32539932971952395978311 ~2006
3254010359650802071910 ~2005
32541563931952493835911 ~2006
32541904811952514288711 ~2006
Exponent Prime Factor Digits Year
3254209223650841844710 ~2005
3254304023650860804710 ~2005
3254320739650864147910 ~2005
3254350283650870056710 ~2005
3254445671650889134310 ~2005
3254466599650893319910 ~2005
3254492771650898554310 ~2005
32545915515858264791911 ~2008
3254634371650926874310 ~2005
3254848631650969726310 ~2005
3254938523650987704710 ~2005
3255173123651034624710 ~2005
3255404759651080951910 ~2005
32554459815208713569711 ~2008
3255501251651100250310 ~2005
32555809977813394392911 ~2008
3255669971651133994310 ~2005
3255692939651138587910 ~2005
3255764903651152980710 ~2005
3255945923651189184710 ~2005
3255948203651189640710 ~2005
3256055459651211091910 ~2005
32560583211953634992711 ~2006
32560991593256099159111 ~2007
32561288934558580450311 ~2007
Home
4.768.925 digits
e-mail
25-05-04