Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3175196639635039327910 ~2005
31756018371905361102311 ~2006
3175646459635129291910 ~2005
317584913913338566383912 ~2008
3175913843635182768710 ~2005
3176016719635203343910 ~2005
3176287043635257408710 ~2005
3176301899635260379910 ~2005
31765544211905932652711 ~2006
3176751251635350250310 ~2005
31768658272541492661711 ~2007
31773030292541842423311 ~2007
3177407459635481491910 ~2005
3177483203635496640710 ~2005
3177565043635513008710 ~2005
317775004723515350347912 ~2009
31778205731906692343911 ~2006
3177888611635577722310 ~2005
3177960419635592083910 ~2005
31779934575084789531311 ~2007
3178450763635690152710 ~2005
3178515503635703100710 ~2005
3178541291635708258310 ~2005
3178797239635759447910 ~2005
3178940543635788108710 ~2005
Exponent Prime Factor Digits Year
31790338273179033827111 ~2007
3179341523635868304710 ~2005
31795163771907709826311 ~2006
31795444131907726647911 ~2006
31797346515087575441711 ~2007
31797868497631488437711 ~2008
31798430337631623279311 ~2008
31798542433179854243111 ~2007
31798690935087790548911 ~2007
3179886719635977343910 ~2005
31802164931908129895911 ~2006
3180322283636064456710 ~2005
3180374159636074831910 ~2005
3180411683636082336710 ~2005
3180441371636088274310 ~2005
31804688571908281314311 ~2006
31804700995724846178311 ~2008
3180582803636116560710 ~2005
3180632531636126506310 ~2005
3180651251636130250310 ~2005
3181025759636205151910 ~2005
3181092539636218507910 ~2005
3181152983636230596710 ~2005
3181183991636236798310 ~2005
3181313903636262780710 ~2005
Exponent Prime Factor Digits Year
3181349399636269879910 ~2005
3181360571636272114310 ~2005
3181467671636293534310 ~2005
3181663763636332752710 ~2005
3181710923636342184710 ~2005
3181727231636345446310 ~2005
3181771991636354398310 ~2005
31818792971909127578311 ~2006
3182021651636404330310 ~2005
3182037779636407555910 ~2005
318215821115910791055112 ~2009
3182255243636451048710 ~2005
3182268359636453671910 ~2005
3182302463636460492710 ~2005
3182415023636483004710 ~2005
3182610839636522167910 ~2005
31826821211909609272711 ~2006
3182817779636563555910 ~2005
31829274412546341952911 ~2007
3183218543636643708710 ~2005
3183306323636661264710 ~2005
3183400439636680087910 ~2005
3183482171636696434310 ~2005
3183524243636704848710 ~2005
3183612059636722411910 ~2005
Exponent Prime Factor Digits Year
3183875003636775000710 ~2005
3183881843636776368710 ~2005
3184208063636841612710 ~2005
3184209863636841972710 ~2005
3184229819636845963910 ~2005
3184284503636856900710 ~2005
31843090811910585448711 ~2006
31843146412547451712911 ~2007
3184532783636906556710 ~2005
3184600931636920186310 ~2005
3184674743636934948710 ~2005
31847234715095557553711 ~2007
3184764263636952852710 ~2005
3184810283636962056710 ~2005
3184833863636966772710 ~2005
3184852823636970564710 ~2005
3184856039636971207910 ~2005
3184951331636990266310 ~2005
3185039831637007966310 ~2005
3185172899637034579910 ~2005
3185332523637066504710 ~2005
31853446515096551441711 ~2007
3185388119637077623910 ~2005
31855324731911319483911 ~2006
3185647691637129538310 ~2005
Home
4.768.925 digits
e-mail
25-05-04