Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3051240431610248086310 ~2005
3051311891610262378310 ~2005
30513183772441054701711 ~2007
30513333014882133281711 ~2007
3051347891610269578310 ~2005
3051541991610308398310 ~2005
30516866233051686623111 ~2007
3051984599610396919910 ~2005
3052011191610402238310 ~2005
3052130591610426118310 ~2005
30522296995494013458311 ~2007
3052305779610461155910 ~2005
30523467712441877416911 ~2007
30523996131831439767911 ~2006
3052673003610534600710 ~2005
30527422331831645339911 ~2006
3052776791610555358310 ~2005
30528831614884613057711 ~2007
30529566531831773991911 ~2006
3053029979610605995910 ~2005
3053122151610624430310 ~2005
30531418011831885080711 ~2006
3053219783610643956710 ~2005
30533299971831997998311 ~2006
3053396891610679378310 ~2005
Exponent Prime Factor Digits Year
3053399819610679963910 ~2005
30535073411832104404711 ~2006
3053511143610702228710 ~2005
3053557631610711526310 ~2005
30536442131832186527911 ~2006
3053701439610740287910 ~2005
30537261777328942824911 ~2008
3053858471610771694310 ~2005
30539460014886313601711 ~2007
3054087923610817584710 ~2005
3054115931610823186310 ~2005
30541395411832483724711 ~2006
305418283912827567923912 ~2008
3054295763610859152710 ~2005
30542988172443439053711 ~2007
30543029692443442375311 ~2007
3054415583610883116710 ~2005
3054420599610884119910 ~2005
3054596183610919236710 ~2005
3054652823610930564710 ~2005
30547332171832839930311 ~2006
3054799739610959947910 ~2005
3054906479610981295910 ~2005
3055327211611065442310 ~2005
30553318574888530971311 ~2007
Exponent Prime Factor Digits Year
3055377371611075474310 ~2005
30556009037333442167311 ~2008
3055665311611133062310 ~2005
3055717271611143454310 ~2005
3055800179611160035910 ~2005
3055951571611190314310 ~2005
30559606395500729150311 ~2007
3056052743611210548710 ~2005
3056084939611216987910 ~2005
3056225723611245144710 ~2005
3056424779611284955910 ~2005
3056458703611291740710 ~2005
30565625812445250064911 ~2007
30567233092445378647311 ~2007
3056808311611361662310 ~2005
3056896103611379220710 ~2005
3056980259611396051910 ~2005
3057058883611411776710 ~2005
3057101951611420390310 ~2005
3057352271611470454310 ~2005
30575153539172546059111 ~2008
3057713819611542763910 ~2005
3057743651611548730310 ~2005
30577737675503992780711 ~2007
3057796211611559242310 ~2005
Exponent Prime Factor Digits Year
3057820091611564018310 ~2005
30579335237339040455311 ~2008
3058147283611629456710 ~2005
30581748531834904911911 ~2006
3058323839611664767910 ~2005
3058338851611667770310 ~2005
3058787159611757431910 ~2005
30588803037341312727311 ~2008
3059048123611809624710 ~2005
30591555313059155531111 ~2007
3059213051611842610310 ~2005
3059262443611852488710 ~2005
3059370131611874026310 ~2005
305956568911626349618312 ~2008
30597408472447792677711 ~2007
3059846519611969303910 ~2005
30598859092447908727311 ~2007
30598909211835934552711 ~2006
3060013283612002656710 ~2005
30600751672448060133711 ~2007
30604152314896664369711 ~2007
3060428303612085660710 ~2005
3060477671612095534310 ~2005
3060637571612127514310 ~2005
30607372577345769416911 ~2008
Home
4.768.925 digits
e-mail
25-05-04