Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2927223371585444674310 ~2005
2927496359585499271910 ~2005
2927542283585508456710 ~2005
2927550443585510088710 ~2005
29275867971756552078311 ~2006
29277936774098911147911 ~2007
2928149363585629872710 ~2005
2928199619585639923910 ~2005
2928229763585645952710 ~2005
2928339059585667811910 ~2005
2928371291585674258310 ~2005
2928461951585692390310 ~2005
2928536711585707342310 ~2005
292861045912300163927912 ~2008
2928712883585742576710 ~2005
2928925691585785138310 ~2005
29289380811757362848711 ~2006
29289416771757365006311 ~2006
2929096763585819352710 ~2005
2929128563585825712710 ~2005
2929292783585858556710 ~2005
29293269731757596183911 ~2006
2929327211585865442310 ~2005
2929340783585868156710 ~2005
2929457579585891515910 ~2005
Exponent Prime Factor Digits Year
2929552091585910418310 ~2005
29299099492343927959311 ~2006
2929987331585997466310 ~2005
2929995983585999196710 ~2005
29301363292344109063311 ~2006
293016433737506103513712 ~2009
2930206271586041254310 ~2005
2930227799586045559910 ~2005
2930292551586058510310 ~2005
29303140611758188436711 ~2006
29304527112930452711111 ~2007
293051015325202387315912 ~2009
2930640239586128047910 ~2005
29307496912344599752911 ~2006
2930757311586151462310 ~2005
2930949551586189910310 ~2005
2930978639586195727910 ~2005
29309858992344788719311 ~2006
2931022943586204588710 ~2005
29312060771758723646311 ~2006
2931256571586251314310 ~2005
2931326663586265332710 ~2005
2931395903586279180710 ~2005
29314013571758840814311 ~2006
2931425411586285082310 ~2005
Exponent Prime Factor Digits Year
2931427259586285451910 ~2005
2931447059586289411910 ~2005
2931513551586302710310 ~2005
29315353371758921202311 ~2006
2931597479586319495910 ~2005
2931712163586342432710 ~2005
29317733112931773311111 ~2007
2931847811586369562310 ~2005
2931889391586377878310 ~2005
2931913871586382774310 ~2005
2932051691586410338310 ~2005
29322891792932289179111 ~2007
29323302771759398166311 ~2006
2932420643586484128710 ~2005
29324611012345968880911 ~2006
2932670483586534096710 ~2005
293273299735192795964112 ~2009
2932819919586563983910 ~2005
2932861259586572251910 ~2005
2932881323586576264710 ~2005
2932929011586585802310 ~2005
2933139719586627943910 ~2005
29331803334106452466311 ~2007
29332324372346585949711 ~2006
2933314451586662890310 ~2005
Exponent Prime Factor Digits Year
2933454383586690876710 ~2005
2933501999586700399910 ~2005
2933621219586724243910 ~2005
29336242571760174554311 ~2006
2933833751586766750310 ~2005
2933850299586770059910 ~2005
29339627211760377632711 ~2006
2934053651586810730310 ~2005
2934096311586819262310 ~2005
29341574272347325941711 ~2006
29341825437042038103311 ~2008
2934191699586838339910 ~2005
2934216443586843288710 ~2005
2934338531586867706310 ~2005
2934454343586890868710 ~2005
2934479363586895872710 ~2005
2934507539586901507910 ~2005
2934582251586916450310 ~2005
2934594599586918919910 ~2005
29346687014695469921711 ~2007
2934688271586937654310 ~2005
29347773432934777343111 ~2007
29347779611760866776711 ~2006
29347829331760869759911 ~2006
2934955451586991090310 ~2005
Home
4.768.925 digits
e-mail
25-05-04