Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
27138976874342236299311 ~2007
2713922591542784518310 ~2005
2713961531542792306310 ~2005
2714040011542808002310 ~2005
2714085719542817143910 ~2005
271416130913027974283312 ~2008
2714208743542841748710 ~2005
2714273651542854730310 ~2005
2714367503542873500710 ~2005
2714434979542886995910 ~2005
27144509512171560760911 ~2006
27144558672714455867111 ~2006
2714478839542895767910 ~2005
27145123011628707380711 ~2006
2714521703542904340710 ~2005
27146180994886312578311 ~2007
2714618603542923720710 ~2005
2714664503542932900710 ~2005
27148094232714809423111 ~2006
2714887583542977516710 ~2005
27149880533800983274311 ~2007
27150508676516122080911 ~2007
2715320339543064067910 ~2005
2715327383543065476710 ~2005
2715345779543069155910 ~2005
Exponent Prime Factor Digits Year
2715390851543078170310 ~2005
2715391643543078328710 ~2005
27154077596516978621711 ~2007
2715417839543083567910 ~2005
27154301531629258091911 ~2006
2715560279543112055910 ~2005
271560945111405559694312 ~2008
2715694259543138851910 ~2005
2716129919543225983910 ~2005
2716145951543229190310 ~2005
2716191059543238211910 ~2005
2716219091543243818310 ~2005
2716392611543278522310 ~2005
2716448243543289648710 ~2005
2716600871543320174310 ~2005
2716723643543344728710 ~2005
2716743863543348772710 ~2005
27167720212173417616911 ~2006
2716793279543358655910 ~2005
27168272572173461805711 ~2006
2716955183543391036710 ~2005
2716992983543398596710 ~2005
2717069903543413980710 ~2005
2717200511543440102310 ~2005
2717302691543460538310 ~2005
Exponent Prime Factor Digits Year
2717644019543528803910 ~2005
27177389872174191189711 ~2006
2717879243543575848710 ~2005
2717903183543580636710 ~2005
2717916431543583286310 ~2005
2717987543543597508710 ~2005
2718023351543604670310 ~2005
2718059999543611999910 ~2005
2718090779543618155910 ~2005
2718165179543633035910 ~2005
2718294599543658919910 ~2005
2718506123543701224710 ~2005
2718547943543709588710 ~2005
27186235335980971772711 ~2007
27186444731631186683911 ~2006
2718759479543751895910 ~2005
271890036728820343890312 ~2009
27189089171631345350311 ~2006
2718945263543789052710 ~2005
27189467331631368039911 ~2006
2719513619543902723910 ~2005
2719880963543976192710 ~2005
271993359111423721082312 ~2008
27199626472175970117711 ~2006
2719965863543993172710 ~2005
Exponent Prime Factor Digits Year
27202677892176214231311 ~2006
27203312171632198730311 ~2006
2720441123544088224710 ~2005
27205832692176466615311 ~2006
2720678879544135775910 ~2005
2720773103544154620710 ~2005
27208858914897594603911 ~2007
2720984531544196906310 ~2005
27211204811632672288711 ~2006
2721128639544225727910 ~2005
2721132083544226416710 ~2005
27211910211632714612711 ~2006
2721335471544267094310 ~2005
27213429011632805740711 ~2006
2721363719544272743910 ~2005
2721427823544285564710 ~2005
27215320611632919236711 ~2006
27215561931632933715911 ~2006
2721560519544312103910 ~2005
2721703499544340699910 ~2005
27217523931633051435911 ~2006
27218495872177479669711 ~2006
2721877643544375528710 ~2005
27219909172177592733711 ~2006
27221841731633310503911 ~2006
Home
4.724.182 digits
e-mail
25-04-13