Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2592433439518486687910 ~2005
25924841571555490494311 ~2006
2592527519518505503910 ~2005
2592599291518519858310 ~2005
2592610799518522159910 ~2005
2592669119518533823910 ~2005
25927049931555622995911 ~2006
2592781679518556335910 ~2005
25927903371555674202311 ~2006
2592907871518581574310 ~2005
2592936323518587264710 ~2005
2593088579518617715910 ~2005
25931089012074487120911 ~2006
2593178543518635708710 ~2005
2593257839518651567910 ~2005
2593300739518660147910 ~2005
2593398443518679688710 ~2005
2593424219518684843910 ~2005
2593426883518685376710 ~2005
2593512023518702404710 ~2005
2593672703518734540710 ~2005
25937383971556243038311 ~2006
2593936643518787328710 ~2005
2594129579518825915910 ~2005
2594201531518840306310 ~2005
Exponent Prime Factor Digits Year
2594231771518846354310 ~2005
25942862174150857947311 ~2007
2594326571518865314310 ~2005
2594401163518880232710 ~2005
25944545171556672710311 ~2006
2594556323518911264710 ~2005
2594623043518924608710 ~2005
25946680931556800855911 ~2006
2594710439518942087910 ~2005
2594736563518947312710 ~2005
2594750051518950010310 ~2005
2594814083518962816710 ~2005
2594815823518963164710 ~2005
2594899403518979880710 ~2005
25949786712594978671111 ~2006
2595000959519000191910 ~2005
2595022271519004454310 ~2005
2595157511519031502310 ~2005
2595235931519047186310 ~2005
25953621495709796727911 ~2007
2595556823519111364710 ~2005
2595590099519118019910 ~2005
2595624191519124838310 ~2005
2595648851519129770310 ~2005
25956694032595669403111 ~2006
Exponent Prime Factor Digits Year
2595692003519138400710 ~2005
2595716099519143219910 ~2005
2595916523519183304710 ~2005
25959511571557570694311 ~2006
2595978779519195755910 ~2005
2596007759519201551910 ~2005
2596023011519204602310 ~2005
2596025039519205007910 ~2005
2596155911519231182310 ~2005
25961566571557693994311 ~2006
2596244999519248999910 ~2005
2596551263519310252710 ~2005
2596664159519332831910 ~2005
259682683112464768788912 ~2008
2596890239519378047910 ~2005
2596897631519379526310 ~2005
2596980359519396071910 ~2005
259701554920256721282312 ~2008
2597121311519424262310 ~2005
2597136851519427370310 ~2005
2597204339519440867910 ~2005
2597370683519474136710 ~2005
25974601331558476079911 ~2006
25975133571558508014311 ~2006
2597517011519503402310 ~2005
Exponent Prime Factor Digits Year
2597768111519553622310 ~2005
2597793923519558784710 ~2005
2597796731519559346310 ~2005
2597889971519577994310 ~2005
25979748531558784911911 ~2006
2598121979519624395910 ~2005
2598128399519625679910 ~2005
2598250079519650015910 ~2005
2598358943519671788710 ~2005
25987284714677711247911 ~2007
2598729323519745864710 ~2005
2598761939519752387910 ~2005
25988002011559280120711 ~2006
2598914963519782992710 ~2005
2599034183519806836710 ~2005
25991090771559465446311 ~2006
2599277099519855419910 ~2005
2599331411519866282310 ~2005
259951741916636911481712 ~2008
25995497536238919407311 ~2007
2599580471519916094310 ~2005
2599684883519936976710 ~2005
2599740779519948155910 ~2005
2599936931519987386310 ~2005
2599977899519995579910 ~2005
Home
4.724.182 digits
e-mail
25-04-13