Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2342692031468538406310 ~2004
2342734799468546959910 ~2004
2342754983468550996710 ~2004
2342776211468555242310 ~2004
2342835923468567184710 ~2004
23429548971405772938311 ~2005
2342957999468591599910 ~2004
23429931293280190380711 ~2006
2343005579468601115910 ~2004
23430362091874428967311 ~2006
23430601011405836060711 ~2005
23430693312343069331111 ~2006
2343122003468624400710 ~2004
2343228479468645695910 ~2004
2343370583468674116710 ~2004
2343391679468678335910 ~2004
2343392459468678491910 ~2004
2343423611468684722310 ~2004
2343471239468694247910 ~2004
23435890491874871239311 ~2006
2343611999468722399910 ~2004
2343620651468724130310 ~2004
2343770843468754168710 ~2004
2343805991468761198310 ~2004
23439549297031864787111 ~2007
Exponent Prime Factor Digits Year
2344017671468803534310 ~2004
23440669371406440162311 ~2005
2344123031468824606310 ~2004
2344152059468830411910 ~2004
2344172003468834400710 ~2004
23442220791875377663311 ~2006
2344275863468855172710 ~2004
23442807591875424607311 ~2006
2344283939468856787910 ~2004
2344341683468868336710 ~2004
2344351319468870263910 ~2004
2344393391468878678310 ~2004
2344410311468882062310 ~2004
23444796795626751229711 ~2007
2344589171468917834310 ~2004
2344631099468926219910 ~2004
2344666799468933359910 ~2004
2344683431468936686310 ~2004
2344686719468937343910 ~2004
2344869671468973934310 ~2004
2344919243468983848710 ~2004
23449457473751913195311 ~2006
23450006331407000379911 ~2005
2345028359469005671910 ~2004
2345046779469009355910 ~2004
Exponent Prime Factor Digits Year
23451015111876081208911 ~2006
23451188232345118823111 ~2006
234514772313132827248912 ~2008
2345149211469029842310 ~2004
23451507411407090444711 ~2005
2345175659469035131910 ~2004
2345211383469042276710 ~2004
2345409239469081847910 ~2004
2345417363469083472710 ~2004
2345444399469088879910 ~2004
2345563691469112738310 ~2004
23455910691876472855311 ~2006
2345661431469132286310 ~2004
2345682011469136402310 ~2004
23457120739382848292111 ~2007
23457667011407460020711 ~2005
2345810303469162060710 ~2004
23458725971407523558311 ~2005
2345919503469183900710 ~2004
2346113579469222715910 ~2004
23462128011876970240911 ~2006
2346246011469249202310 ~2004
2346246971469249394310 ~2004
2346269699469253939910 ~2004
23463005811877040464911 ~2006
Exponent Prime Factor Digits Year
2346319271469263854310 ~2004
2346320783469264156710 ~2004
23465263191877221055311 ~2006
2346534479469306895910 ~2004
2346542339469308467910 ~2004
23465466474223783964711 ~2007
2346588479469317695910 ~2004
2346673643469334728710 ~2004
23467180611408030836711 ~2005
23469213011408152780711 ~2005
2347025123469405024710 ~2004
23471339391877707151311 ~2006
2347135019469427003910 ~2004
23471929011877754320911 ~2006
2347216139469443227910 ~2004
2347244759469448951910 ~2004
2347454891469490978310 ~2004
23475496133286569458311 ~2006
2347571351469514270310 ~2004
23475882114225658779911 ~2007
2347659683469531936710 ~2004
2347678043469535608710 ~2004
2347691579469538315910 ~2004
23477635131408658107911 ~2005
2347836611469567322310 ~2004
Home
4.768.925 digits
e-mail
25-05-04