Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1018163483203632696710 ~2001
1018200917610920550310 ~2003
10182019672647325114311 ~2004
1018210079203642015910 ~2001
1018221731203644346310 ~2001
1018240511203648102310 ~2001
1018269061610961436710 ~2003
1018284557610970734310 ~2003
1018285319203657063910 ~2001
1018288079203657615910 ~2001
1018300319203660063910 ~2001
1018310141610986084710 ~2003
10183283471629325355311 ~2004
1018381271203676254310 ~2001
1018390873611034523910 ~2003
1018404011814723208910 ~2003
10184313973055294191111 ~2004
1018445651203689130310 ~2001
10184656672648010734311 ~2004
1018470443203694088710 ~2001
1018475879203695175910 ~2001
1018504511814803608910 ~2003
1018513403203702680710 ~2001
1018549331203709866310 ~2001
1018598459203719691910 ~2001
Exponent Prime Factor Digits Year
10186436693055931007111 ~2004
1018649279203729855910 ~2001
1018668491814934792910 ~2003
1018695011203739002310 ~2001
1018724639203744927910 ~2001
1018745159203749031910 ~2001
1018771031203754206310 ~2001
1018812073611287243910 ~2003
1018839683203767936710 ~2001
1018849757815079805710 ~2003
10188609771426405367911 ~2003
1018906297611343778310 ~2003
1018909343203781868710 ~2001
1018920671203784134310 ~2001
10189291391018929139111 ~2003
1018957463203791492710 ~2001
10189662613056898783111 ~2004
1019023283203804656710 ~2001
1019038271203807654310 ~2001
1019074883203814976710 ~2001
1019079599203815919910 ~2001
1019083979203816795910 ~2001
1019090459815272367310 ~2003
1019094337611456602310 ~2003
1019218199203843639910 ~2001
Exponent Prime Factor Digits Year
1019225699203845139910 ~2001
1019232251203846450310 ~2001
1019319599203863919910 ~2001
1019327741611596644710 ~2003
1019338319203867663910 ~2001
1019347211203869442310 ~2001
1019371163203874232710 ~2001
1019383751203876750310 ~2001
1019398631203879726310 ~2001
1019423459203884691910 ~2001
1019427803203885560710 ~2001
1019462903203892580710 ~2001
1019480603203896120710 ~2001
1019500799815600639310 ~2003
1019508923203901784710 ~2001
1019509691203901938310 ~2001
1019559059203911811910 ~2001
1019570999203914199910 ~2001
1019584199203916839910 ~2001
1019585471203917094310 ~2001
1019610191203922038310 ~2001
1019611751203922350310 ~2001
1019650343203930068710 ~2001
10197074534078829812111 ~2005
1019732933611839759910 ~2003
Exponent Prime Factor Digits Year
10197400493263168156911 ~2004
1019860781611916468710 ~2003
1019905511203981102310 ~2001
1019956571203991314310 ~2001
1019957273611974363910 ~2003
1020007031204001406310 ~2001
1020012493612007495910 ~2003
1020024359204004871910 ~2001
1020029771816023816910 ~2003
1020064169816051335310 ~2003
1020083843204016768710 ~2001
1020083891204016778310 ~2001
1020095099204019019910 ~2001
1020119279204023855910 ~2001
10201246437344897429711 ~2005
1020157031204031406310 ~2001
1020238883204047776710 ~2001
1020252251204050450310 ~2001
1020286031204057206310 ~2001
10203025871020302587111 ~2003
1020316343204063268710 ~2001
1020323879204064775910 ~2001
1020380423204076084710 ~2001
1020381179204076235910 ~2001
1020383471204076694310 ~2001
Home
5.307.017 digits
e-mail
26-01-11