Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1826035031365207006310 ~2003
1826036423365207284710 ~2003
1826100791365220158310 ~2003
1826162951365232590310 ~2003
18261750776939465292711 ~2006
182622271122279917074312 ~2008
1826255339365251067910 ~2003
1826325911365265182310 ~2003
18264077531095844651911 ~2004
1826468543365293708710 ~2003
1826533463365306692710 ~2003
1826585699365317139910 ~2003
1826618603365323720710 ~2003
1826724899365344979910 ~2003
1826784539365356907910 ~2003
1826797859365359571910 ~2003
1826811263365362252710 ~2003
1826842463365368492710 ~2003
1826851811365370362310 ~2003
1826879111365375822310 ~2003
1826956583365391316710 ~2003
1826964791365392958310 ~2003
1826972159365394431910 ~2003
18269874531096192471911 ~2004
18270158818769676228911 ~2007
Exponent Prime Factor Digits Year
1827048731365409746310 ~2003
1827061919365412383910 ~2003
18271751691461740135311 ~2005
1827288839365457767910 ~2003
18273757931096425475911 ~2004
18274517771096471066311 ~2004
1827452531365490506310 ~2003
1827485279365497055910 ~2003
1827636659365527331910 ~2003
1827706619365541323910 ~2003
1827765431365553086310 ~2003
18278139171096688350311 ~2004
1827829463365565892710 ~2003
1827877823365575564710 ~2003
18279772971096786378311 ~2004
18281119371462489549711 ~2005
1828198499365639699910 ~2003
18282315837678572648711 ~2007
18282702171096962130311 ~2004
18283086612925293857711 ~2006
1828315283365663056710 ~2003
1828422503365684500710 ~2003
18284527631828452763111 ~2005
18284533211097071992711 ~2005
18284985471462798837711 ~2005
Exponent Prime Factor Digits Year
18285571492559980008711 ~2005
1828603391365720678310 ~2003
1828714031365742806310 ~2003
1828718999365743799910 ~2003
1828764023365752804710 ~2003
1828787171365757434310 ~2003
18288302092560362292711 ~2005
1828915859365783171910 ~2003
1828960739365792147910 ~2003
18289979177315991668111 ~2007
1829028191365805638310 ~2003
1829053883365810776710 ~2003
1829106743365821348710 ~2003
1829149979365829995910 ~2003
18292404291463392343311 ~2005
18293651774390476424911 ~2006
1829481359365896271910 ~2003
18295084794390820349711 ~2006
1829530799365906159910 ~2003
1829567699365913539910 ~2003
1829577719365915543910 ~2003
1829863019365972603910 ~2003
18298944772561852267911 ~2005
1829900651365980130310 ~2003
1829901383365980276710 ~2003
Exponent Prime Factor Digits Year
18299190611097951436711 ~2005
1829953571365990714310 ~2003
1829960003365992000710 ~2003
18299628011097977680711 ~2005
1830014111366002822310 ~2003
1830179831366035966310 ~2003
183018592710249041191312 ~2007
1830192323366038464710 ~2003
18302577611098154656711 ~2005
18303092531098185551911 ~2005
1830314303366062860710 ~2003
1830327263366065452710 ~2003
1830336311366067262310 ~2003
1830345311366069062310 ~2003
1830370571366074114310 ~2003
1830397703366079540710 ~2003
1830440159366088031910 ~2003
1830452003366090400710 ~2003
1830453239366090647910 ~2003
1830605519366121103910 ~2003
18307015811098420948711 ~2005
1830704723366140944710 ~2003
1830715391366143078310 ~2003
1830828179366165635910 ~2003
1830911051366182210310 ~2003
Home
4.768.925 digits
e-mail
25-05-04