Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17685762131061145727911 ~2004
1768676879353735375910 ~2003
1768732859353746571910 ~2003
1768815263353763052710 ~2003
1768846451353769290310 ~2003
1768977599353795519910 ~2003
17690526613891915854311 ~2006
1769137343353827468710 ~2003
1769174171353834834310 ~2003
1769200679353840135910 ~2003
1769220899353844179910 ~2003
1769320991353864198310 ~2003
17693509371061610562311 ~2004
17694949571061696974311 ~2004
1769589539353917907910 ~2003
17696173731061770423911 ~2004
1769703251353940650310 ~2003
1769722379353944475910 ~2003
1769749199353949839910 ~2003
1769756903353951380710 ~2003
1769758499353951699910 ~2003
17697864294247487429711 ~2006
17698091771061885506311 ~2004
17698176131061890567911 ~2004
1769865791353973158310 ~2003
Exponent Prime Factor Digits Year
1769925383353985076710 ~2003
1769947499353989499910 ~2003
1769984039353996807910 ~2003
1770025331354005066310 ~2003
1770032963354006592710 ~2003
1770066971354013394310 ~2003
177012078721241449444112 ~2008
1770128471354025694310 ~2003
1770160571354032114310 ~2003
17701730172832276827311 ~2005
1770184499354036899910 ~2003
17702555691416204455311 ~2005
1770277979354055595910 ~2003
1770389339354077867910 ~2003
1770519983354103996710 ~2003
1770549743354109948710 ~2003
17705775731062346543911 ~2004
1770588503354117700710 ~2003
17706007071416480565711 ~2005
1770612131354122426310 ~2003
177061484315935533587112 ~2007
17706365993187145878311 ~2006
1770643403354128680710 ~2003
17706475331062388519911 ~2004
1770678803354135760710 ~2003
Exponent Prime Factor Digits Year
1770907343354181468710 ~2003
1771018631354203726310 ~2003
1771203851354240770310 ~2003
17713706691417096535311 ~2005
1771423259354284651910 ~2003
17714557371062873442311 ~2004
1771456103354291220710 ~2003
1771489259354297851910 ~2003
1771499291354299858310 ~2003
17715012971062900778311 ~2004
1771538999354307799910 ~2003
17715771732834523476911 ~2005
17716359411417308752911 ~2005
1771715303354343060710 ~2003
1771719179354343835910 ~2003
17717524011063051440711 ~2004
1771804211354360842310 ~2003
17718904434252537063311 ~2006
1771988951354397790310 ~2003
1772007551354401510310 ~2003
17720556471417644517711 ~2005
1772161211354432242310 ~2003
17722021491417761719311 ~2005
1772232743354446548710 ~2003
17722940112835670417711 ~2005
Exponent Prime Factor Digits Year
1772316239354463247910 ~2003
1772336999354467399910 ~2003
1772341871354468374310 ~2003
1772366111354473222310 ~2003
17724238812835878209711 ~2005
17724462411063467744711 ~2004
1772466263354493252710 ~2003
17724767993190458238311 ~2006
1772563139354512627910 ~2003
177263674311344875155312 ~2007
1772754299354550859910 ~2003
1772772923354554584710 ~2003
17727882611063672956711 ~2004
17727946034254707047311 ~2006
177284005723756056763912 ~2008
1772863019354572603910 ~2003
1772863439354572687910 ~2003
1772870303354574060710 ~2003
1772915723354583144710 ~2003
1772918951354583790310 ~2003
17729730311772973031111 ~2005
17729895672836783307311 ~2005
1773158903354631780710 ~2003
1773160799354632159910 ~2003
1773209363354641872710 ~2003
Home
4.768.925 digits
e-mail
25-05-04