Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1748479259349695851910 ~2003
1748543171349708634310 ~2003
1748547959349709591910 ~2003
17485596411049135784711 ~2004
1748587931349717586310 ~2003
1748602283349720456710 ~2003
1748606003349721200710 ~2003
1748612891349722578310 ~2003
17486206331049172379911 ~2004
1748630171349726034310 ~2003
174866846336722037723112 ~2008
1748798039349759607910 ~2003
17488309071399064725711 ~2005
17489040131049342407911 ~2004
17489228413847630250311 ~2006
1748928323349785664710 ~2003
1749092363349818472710 ~2003
1749108143349821628710 ~2003
17491797371049507842311 ~2004
17492643591399411487311 ~2005
17493445874198427008911 ~2006
1749387539349877507910 ~2003
17494011194198562685711 ~2006
174948850912246419563112 ~2007
1749511559349902311910 ~2003
Exponent Prime Factor Digits Year
1749516623349903324710 ~2003
17495337432799253988911 ~2005
1749598439349919687910 ~2003
1749600623349920124710 ~2003
1749697619349939523910 ~2003
1749737399349947479910 ~2003
1749737579349947515910 ~2003
1749771539349954307910 ~2003
17497941971049876518311 ~2004
17498578811049914728711 ~2004
17499022011049941320711 ~2004
1750010939350002187910 ~2003
1750173083350034616710 ~2003
17502108731050126523911 ~2004
1750268963350053792710 ~2003
1750299179350059835910 ~2003
1750307651350061530310 ~2003
1750311071350062214310 ~2003
17504064591400325167311 ~2005
1750513343350102668710 ~2003
1750537703350107540710 ~2003
1750669631350133926310 ~2003
1750762511350152502310 ~2003
17508121011050487260711 ~2004
1750857263350171452710 ~2003
Exponent Prime Factor Digits Year
1750870631350174126310 ~2003
1751077019350215403910 ~2003
17511222771050673366311 ~2004
1751309471350261894310 ~2003
1751370143350274028710 ~2003
17513846711751384671111 ~2005
17513900571050834034311 ~2004
17514452873152601516711 ~2006
1751478203350295640710 ~2003
17515992371050959542311 ~2004
1751613179350322635910 ~2003
1751791403350358280710 ~2003
1751928911350385782310 ~2003
1751971691350394338310 ~2003
17520000531051200031911 ~2004
17521041292452945780711 ~2005
1752117791350423558310 ~2003
1752131159350426231910 ~2003
1752141119350428223910 ~2003
1752152819350430563910 ~2003
1752227579350445515910 ~2003
17522491332803598612911 ~2005
1752322499350464499910 ~2003
1752379199350475839910 ~2003
1752412223350482444710 ~2003
Exponent Prime Factor Digits Year
17524191131051451467911 ~2004
1752461723350492344710 ~2003
1752587423350517484710 ~2003
1752662519350532503910 ~2003
1752772019350554403910 ~2003
17528169171051690150311 ~2004
17528804271402304341711 ~2005
1752934919350586983910 ~2003
1753083803350616760710 ~2003
1753144691350628938310 ~2003
1753164683350632936710 ~2003
17532742971051964578311 ~2004
1753293299350658659910 ~2003
17533046691402643735311 ~2005
1753328579350665715910 ~2003
1753371419350674283910 ~2003
1753419971350683994310 ~2003
17534358771052061526311 ~2004
17534379011052062740711 ~2004
17534688772454856427911 ~2005
1753476299350695259910 ~2003
17534873571052092414311 ~2004
1753530371350706074310 ~2003
1753548119350709623910 ~2003
17535486611052129196711 ~2004
Home
4.768.925 digits
e-mail
25-05-04