Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17214715371032882922311 ~2004
17215357791377228623311 ~2005
1721695379344339075910 ~2003
1721772179344354435910 ~2003
172180507312396996525712 ~2007
17219620371033177222311 ~2004
17220079971033204798311 ~2004
1722016511344403302310 ~2003
1722017051344403410310 ~2003
1722020351344404070310 ~2003
17220603371033236202311 ~2004
1722120971344424194310 ~2003
1722142403344428480710 ~2003
1722174131344434826310 ~2003
17221923971033315438311 ~2004
17222176871722217687111 ~2005
1722238571344447714310 ~2003
17222600091377808007311 ~2005
1722261011344452202310 ~2003
1722293231344458646310 ~2003
1722409883344481976710 ~2003
1722438923344487784710 ~2003
1722557363344511472710 ~2003
17226050391378084031311 ~2005
172264787316537419580912 ~2007
Exponent Prime Factor Digits Year
1722681431344536286310 ~2003
172270503111369853204712 ~2007
17227290916890916364111 ~2006
1722747503344549500710 ~2003
1722780491344556098310 ~2003
1722852083344570416710 ~2003
1722931319344586263910 ~2003
1723002503344600500710 ~2003
1723035383344607076710 ~2003
17230601691378448135311 ~2005
1723090079344618015910 ~2003
17231189831723118983111 ~2005
1723122059344624411910 ~2003
1723308539344661707910 ~2003
1723345499344669099910 ~2003
1723556603344711320710 ~2003
1723584311344716862310 ~2003
1723679663344735932710 ~2003
1723774631344754926310 ~2003
17238657913102958423911 ~2005
17238889971034333398311 ~2004
1723938383344787676710 ~2003
17240379671724037967111 ~2005
1724058431344811686310 ~2003
1724077919344815583910 ~2003
Exponent Prime Factor Digits Year
17240856593103354186311 ~2005
17241016371034460982311 ~2004
1724107943344821588710 ~2003
1724112083344822416710 ~2003
17241138891379291111311 ~2005
1724177219344835443910 ~2003
1724238599344847719910 ~2003
1724348159344869631910 ~2003
1724451671344890334310 ~2003
17244742911379579432911 ~2005
17246015692414442196711 ~2005
17246650811034799048711 ~2004
17248778716899511484111 ~2006
17249747531034984851911 ~2004
17249760834484937815911 ~2006
17250268931035016135911 ~2004
1725034919345006983910 ~2003
17250384531035023071911 ~2004
17250597711380047816911 ~2005
17251031391380082511311 ~2005
1725108263345021652710 ~2003
1725196859345039371910 ~2003
1725217691345043538310 ~2003
1725298079345059615910 ~2003
17253012171035180730311 ~2004
Exponent Prime Factor Digits Year
1725312503345062500710 ~2003
1725315659345063131910 ~2003
17253303611035198216711 ~2004
17253341411035200484711 ~2004
1725392171345078434310 ~2003
1725415319345083063910 ~2003
1725446231345089246310 ~2003
1725451919345090383910 ~2003
17254533771035272026311 ~2004
17254725595521512188911 ~2006
1725588803345117760710 ~2003
1725796151345159230310 ~2003
17258165511380653240911 ~2005
17258214771380657181711 ~2005
1726009163345201832710 ~2003
1726385099345277019910 ~2003
1726393199345278639910 ~2003
17264310611035858636711 ~2004
1726464731345292946310 ~2003
17264780571381182445711 ~2005
1726486511345297302310 ~2003
17266183011035970980711 ~2004
1726642979345328595910 ~2003
17266572531035994351911 ~2004
1726664039345332807910 ~2003
Home
4.724.182 digits
e-mail
25-04-13