Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1533081419306616283910 ~2003
1533138779306627755910 ~2003
1533160679306632135910 ~2003
1533203519306640703910 ~2003
1533289451306657890310 ~2003
1533290483306658096710 ~2003
1533367679306673535910 ~2003
1533380963306676192710 ~2003
1533442331306688466310 ~2003
1533445019306689003910 ~2003
1533539921920123952710 ~2004
1533578603306715720710 ~2003
1533648971306729794310 ~2003
15336613911226929112911 ~2004
1533675371306735074310 ~2003
1533726839306745367910 ~2003
1533729731306745946310 ~2003
1533843659306768731910 ~2003
15339338811227147104911 ~2004
1533952379306790475910 ~2003
1534000679306800135910 ~2003
1534026917920416150310 ~2004
1534040617920424370310 ~2004
15340704711227256376911 ~2004
1534103617920462170310 ~2004
Exponent Prime Factor Digits Year
1534159637920495782310 ~2004
1534229171306845834310 ~2003
1534231871306846374310 ~2003
1534273501920564100710 ~2004
1534299251306859850310 ~2003
15343074312761753375911 ~2005
1534370471306874094310 ~2003
1534457159306891431910 ~2003
1534465613920679367910 ~2004
1534476959306895391910 ~2003
15345062893375913835911 ~2005
15345456193682909485711 ~2005
1534579031306915806310 ~2003
1534600799306920159910 ~2003
1534610351306922070310 ~2003
1534634099306926819910 ~2003
1534683191306936638310 ~2003
1534712759306942551910 ~2003
1534751303306950260710 ~2003
1534778213920866927910 ~2004
1534915859306983171910 ~2003
1534966451306993290310 ~2003
1534999463306999892710 ~2003
1535070371307014074310 ~2003
15351086571228086925711 ~2004
Exponent Prime Factor Digits Year
1535193743307038748710 ~2003
1535253383307050676710 ~2003
1535344631307068926310 ~2003
1535352443307070488710 ~2003
1535371763307074352710 ~2003
1535427143307085428710 ~2003
1535472923307094584710 ~2003
1535566619307113323910 ~2003
1535605391307121078310 ~2003
15356295773685510984911 ~2005
1535673961921404376710 ~2004
1535711003307142200710 ~2003
1535756441921453864710 ~2004
15357788211228623056911 ~2004
1535791643307158328710 ~2003
1535825771307165154310 ~2003
15358658091228692647311 ~2004
1535906951307181390310 ~2003
1535946383307189276710 ~2003
1535977979307195595910 ~2003
1535979839307195967910 ~2003
1535994359307198871910 ~2003
15359975271228798021711 ~2004
1536042503307208500710 ~2003
1536079211307215842310 ~2003
Exponent Prime Factor Digits Year
15360895517373229844911 ~2006
1536098939307219787910 ~2003
1536127739307225547910 ~2003
1536264841921758904710 ~2004
15362720691229017655311 ~2004
1536278699307255739910 ~2003
1536298691307259738310 ~2003
1536342383307268476710 ~2003
1536407363307281472710 ~2003
1536416963307283392710 ~2003
15364483993687476157711 ~2005
1536498179307299635910 ~2003
1536511139307302227910 ~2003
1536562463307312492710 ~2003
15366206711536620671111 ~2004
1536776243307355248710 ~2003
15368041971229443357711 ~2004
1536835031307367006310 ~2003
1536848171307369634310 ~2003
15368938011229515040911 ~2004
1536952633922171579910 ~2004
1536966779307393355910 ~2003
1536983111307396622310 ~2003
15371055013381632102311 ~2005
15372201773689328424911 ~2005
Home
4.724.182 digits
e-mail
25-04-13