Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1384526651276905330310 ~2002
1384589399276917879910 ~2002
1384607557830764534310 ~2004
13846500791384650079111 ~2004
1384689133830813479910 ~2004
13847051711384705171111 ~2004
1384717871276943574310 ~2002
13847302311107784184911 ~2004
1384734503276946900710 ~2002
1384742759276948551910 ~2002
1384785071276957014310 ~2002
1384793519276958703910 ~2002
1384823243276964648710 ~2002
1384880663276976132710 ~2002
1384899539276979907910 ~2002
13849273512492869231911 ~2005
1384942463276988492710 ~2002
1385005613831003367910 ~2004
1385012879277002575910 ~2002
1385022959277004591910 ~2002
1385156471277031294310 ~2002
13851792592493322666311 ~2005
1385231759277046351910 ~2002
1385238539277047707910 ~2002
1385318939277063787910 ~2002
Exponent Prime Factor Digits Year
1385384521831230712710 ~2004
13853965611108317248911 ~2004
1385459759277091951910 ~2002
1385480477831288286310 ~2004
1385518657831311194310 ~2004
1385584919277116983910 ~2002
1385603333831361999910 ~2004
1385617511277123502310 ~2002
13856219574156865871111 ~2005
1385665871277133174310 ~2002
1385706083277141216710 ~2002
1385738771277147754310 ~2002
13857476595542990636111 ~2006
1385847503277169500710 ~2002
1385872679277174535910 ~2002
13858898333326135599311 ~2005
1385891159277178231910 ~2002
1386009959277201991910 ~2002
1386027373831616423910 ~2004
1386033997831620398310 ~2004
1386072179277214435910 ~2002
1386124703277224940710 ~2002
1386135251277227050310 ~2002
13863344832218135172911 ~2005
1386413857831848314310 ~2004
Exponent Prime Factor Digits Year
1386435733831861439910 ~2004
1386486203277297240710 ~2002
1386493379277298675910 ~2002
1386533783277306756710 ~2002
1386552899277310579910 ~2002
1386553859277310771910 ~2002
1386603059277320611910 ~2002
1386638621831983172710 ~2004
1386757271277351454310 ~2002
1386810413832086247910 ~2004
1386836411277367282310 ~2002
1386863531277372706310 ~2002
13868713932218994228911 ~2005
1386900503277380100710 ~2002
13869349031386934903111 ~2004
13869553011109564240911 ~2004
1386968699277393739910 ~2002
1386989651277397930310 ~2002
13870220534161066159111 ~2005
13870504371109640349711 ~2004
1387096559277419311910 ~2002
1387165883277433176710 ~2002
1387291751277458350310 ~2002
1387310321832386192710 ~2004
13873103691109848295311 ~2004
Exponent Prime Factor Digits Year
1387360979277472195910 ~2002
1387374953832424971910 ~2004
1387430519277486103910 ~2002
1387461503277492300710 ~2002
1387466291277493258310 ~2002
1387606331277521266310 ~2002
1387607219277521443910 ~2002
13876172271110093781711 ~2004
13876513932220242228911 ~2005
13878192493053202347911 ~2005
1387897463277579492710 ~2002
13879082871110326629711 ~2004
1387944791277588958310 ~2002
1387951151277590230310 ~2002
1387958699277591739910 ~2002
1387979699277595939910 ~2002
1387990979277598195910 ~2002
1388043851277608770310 ~2002
1388061491277612298310 ~2002
1388090897832854538310 ~2004
13881812931943453810311 ~2004
13882066392498771950311 ~2005
1388225711277645142310 ~2002
1388246663277649332710 ~2002
1388315101832989060710 ~2004
Home
4.768.925 digits
e-mail
25-05-04