Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
12785843571790018099911 ~2004
1278593639255718727910 ~2002
1278610241767166144710 ~2003
1278626521767175912710 ~2003
1278719303255743860710 ~2002
1278735061767241036710 ~2003
1278750611255750122310 ~2002
1278823523255764704710 ~2002
12788426111278842611111 ~2004
12788679236394339615111 ~2006
1278878297767326978310 ~2003
1278888599255777719910 ~2002
1278891899255778379910 ~2002
12789274912302069483911 ~2004
1278962579255792515910 ~2002
1278995351255799070310 ~2002
1279019303255803860710 ~2002
1279063319255812663910 ~2002
1279099691255819938310 ~2002
1279110323255822064710 ~2002
1279212023255842404710 ~2002
1279216979255843395910 ~2002
1279254611255850922310 ~2002
12792846411023427712911 ~2004
1279311179255862235910 ~2002
Exponent Prime Factor Digits Year
1279402739255880547910 ~2002
1279537859255907571910 ~2002
1279555223255911044710 ~2002
12796083891791451744711 ~2004
12796111196142133371311 ~2006
1279615919255923183910 ~2002
1279616951255923390310 ~2002
1279637939255927587910 ~2002
1279682051255936410310 ~2002
12796897913327193456711 ~2005
1279690733767814439910 ~2003
1279763123255952624710 ~2002
1279787471255957494310 ~2002
12797888232047662116911 ~2004
1279801223255960244710 ~2002
1279813103255962620710 ~2002
1279813739255962747910 ~2002
1279828139255965627910 ~2002
12798399891023871991311 ~2004
12798442573071626216911 ~2005
1279881803255976360710 ~2002
12799052511023924200911 ~2004
1279933861767960316710 ~2003
1279968923255993784710 ~2002
1279997399255999479910 ~2002
Exponent Prime Factor Digits Year
12800056971024004557711 ~2004
1280048879256009775910 ~2002
1280107859256021571910 ~2002
12801228891024098311311 ~2004
1280141363256028272710 ~2002
1280197739256039547910 ~2002
1280231279256046255910 ~2002
12802967934096949737711 ~2005
1280344201768206520710 ~2003
12803767911024301432911 ~2004
1280403731256080746310 ~2002
1280409413768245647910 ~2003
1280413523256082704710 ~2002
1280443091256088618310 ~2002
1280489471256097894310 ~2002
12806108391024488671311 ~2004
1280611919256122383910 ~2002
12806757233073621735311 ~2005
1280694071256138814310 ~2002
1280772659256154531910 ~2002
1280835299256167059910 ~2002
1280838683256167736710 ~2002
1280862983256172596710 ~2002
1280874599256174919910 ~2002
12808754111280875411111 ~2004
Exponent Prime Factor Digits Year
1280930219256186043910 ~2002
1280947163256189432710 ~2002
1280955359256191071910 ~2002
1280962031256192406310 ~2002
1281047759256209551910 ~2002
12810533511024842680911 ~2004
1281165419256233083910 ~2002
1281236279256247255910 ~2002
1281258383256251676710 ~2002
12812642513331287052711 ~2005
12812690512306284291911 ~2004
1281283043256256608710 ~2002
12813043011025043440911 ~2004
1281380459256276091910 ~2002
12814504914100641571311 ~2005
1281479411256295882310 ~2002
1281482063256296412710 ~2002
1281483323256296664710 ~2002
1281529211256305842310 ~2002
1281573599256314719910 ~2002
1281651323256330264710 ~2002
1281680353769008211910 ~2003
12816810835383060548711 ~2005
1281690131256338026310 ~2002
1281700391256340078310 ~2002
Home
4.768.925 digits
e-mail
25-05-04