Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1265744939253148987910 ~2002
1265768297759460978310 ~2003
1265770223253154044710 ~2002
12657901071012632085711 ~2004
1265799611253159922310 ~2002
1265803163253160632710 ~2002
1265834231253166846310 ~2002
1265938931253187786310 ~2002
12659426471265942647111 ~2004
12660278711266027871111 ~2004
1266058883253211776710 ~2002
1266070103253214020710 ~2002
12660706391266070639111 ~2004
12661027872025764459311 ~2004
1266196259253239251910 ~2002
1266251891253250378310 ~2002
1266282239253256447910 ~2002
1266285353759771211910 ~2003
1266285719253257143910 ~2002
1266331991253266398310 ~2002
1266354143253270828710 ~2002
12663594536838341046311 ~2006
1266369541759821724710 ~2003
1266375359253275071910 ~2002
1266384011253276802310 ~2002
Exponent Prime Factor Digits Year
1266390623253278124710 ~2002
1266394133759836479910 ~2003
1266396083253279216710 ~2002
1266558899253311779910 ~2002
12665629671013250373711 ~2004
1266592979253318595910 ~2002
126664343943572534301712 ~2008
1266647401759988440710 ~2003
1266716051253343210310 ~2002
1266819143253363828710 ~2002
12668254491013460359311 ~2004
12668398911013471912911 ~2004
1266902723253380544710 ~2002
1266910553760146331910 ~2003
1266983171253396634310 ~2002
1267007459253401491910 ~2002
1267021391253404278310 ~2002
1267067233760240339910 ~2003
1267134383253426876710 ~2002
1267137359253427471910 ~2002
1267182503253436500710 ~2002
1267196531253439306310 ~2002
1267203493760322095910 ~2003
1267263863253452772710 ~2002
1267320143253464028710 ~2002
Exponent Prime Factor Digits Year
1267323203253464640710 ~2002
1267380071253476014310 ~2002
12674539974816325188711 ~2005
1267456499253491299910 ~2002
1267601603253520320710 ~2002
1267641143253528228710 ~2002
1267727771253545554310 ~2002
1267736303253547260710 ~2002
1267756571253551314310 ~2002
1267903691253580738310 ~2002
1267921019253584203910 ~2002
12679360272028697643311 ~2004
1267953539253590707910 ~2002
1267965431253593086310 ~2002
1268027759253605551910 ~2002
1268045183253609036710 ~2002
1268084159253616831910 ~2002
1268100959253620191910 ~2002
1268138633760883179910 ~2003
1268166023253633204710 ~2002
1268172821760903692710 ~2003
1268218177760930906310 ~2003
1268231423253646284710 ~2002
1268265023253653004710 ~2002
1268294603253658920710 ~2002
Exponent Prime Factor Digits Year
1268322479253664495910 ~2002
1268323541760994124710 ~2003
1268413261761047956710 ~2003
1268460503253692100710 ~2002
1268472203253694440710 ~2002
1268474279253694855910 ~2002
1268547251253709450310 ~2002
1268598911253719782310 ~2002
12686607972029857275311 ~2004
12686674272283601368711 ~2004
1268733743253746748710 ~2002
1268747891253749578310 ~2002
1268780003253756000710 ~2002
1268785319253757063910 ~2002
1268887523253777504710 ~2002
1268900357761340214310 ~2003
1268912717761347630310 ~2003
1268978759253795751910 ~2002
1268988023253797604710 ~2002
1269029711253805942310 ~2002
1269057983253811596710 ~2002
12690818232030530916911 ~2004
1269092677761455606310 ~2003
1269105263253821052710 ~2002
1269107663253821532710 ~2002
Home
4.768.925 digits
e-mail
25-05-04