Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1089707891217941578310 ~2002
1089711071217942214310 ~2002
10897176613269152983111 ~2004
1089719801653831880710 ~2003
1089820643217964128710 ~2002
1089847859217969571910 ~2002
1089851183217970236710 ~2002
1089865943217973188710 ~2002
1089901451217980290310 ~2002
1089956639217991327910 ~2002
10899757438719805944111 ~2006
1090026011218005202310 ~2002
1090034831218006966310 ~2002
10900610813270183243111 ~2004
109009561912209070932912 ~2006
1090118831218023766310 ~2002
10901709431090170943111 ~2003
1090175903218035180710 ~2002
1090199801872159840910 ~2003
1090224743218044948710 ~2002
1090299251218059850310 ~2002
1090333697654200218310 ~2003
1090339031218067806310 ~2002
1090345043218069008710 ~2002
1090387097872309677710 ~2003
Exponent Prime Factor Digits Year
1090417463218083492710 ~2002
1090444079218088815910 ~2002
1090447271218089454310 ~2002
1090528319218105663910 ~2002
1090552019218110403910 ~2002
1090564031218112806310 ~2002
10905891914362356764111 ~2005
1090597439218119487910 ~2002
1090602179218120435910 ~2002
10906162973271848891111 ~2004
1090637489872509991310 ~2003
1090654141654392484710 ~2003
1090702451218140490310 ~2002
1090769437654461662310 ~2003
1090875503218175100710 ~2002
1090985213654591127910 ~2003
1090987211218197442310 ~2002
1090997279218199455910 ~2002
10910228511963841131911 ~2004
1091028803218205760710 ~2002
1091034443218206888710 ~2002
1091046263218209252710 ~2002
1091084363218216872710 ~2002
1091134991872907992910 ~2003
1091144843218228968710 ~2002
Exponent Prime Factor Digits Year
1091175221654705132710 ~2003
1091217839218243567910 ~2002
1091238779218247755910 ~2002
1091281393654768835910 ~2003
1091283239218256647910 ~2002
1091311619218262323910 ~2002
1091313037654787822310 ~2003
1091315171218263034310 ~2002
1091366579218273315910 ~2002
1091402219218280443910 ~2002
1091426543218285308710 ~2002
1091462837654877702310 ~2003
1091473919218294783910 ~2002
1091508503218301700710 ~2002
1091514239218302847910 ~2002
10915190413274557123111 ~2004
1091555879218311175910 ~2002
1091595059873276047310 ~2003
1091627807873302245710 ~2003
1091679311218335862310 ~2002
1091688413655013047910 ~2003
1091700719218340143910 ~2002
1091783663218356732710 ~2002
1091821403218364280710 ~2002
1091909561873527648910 ~2003
Exponent Prime Factor Digits Year
1091988983218397796710 ~2002
1091995211218399042310 ~2002
1092002771218400554310 ~2002
1092021803218404360710 ~2002
1092140771218428154310 ~2002
1092150539218430107910 ~2002
10921635071092163507111 ~2003
1092171959218434391910 ~2002
1092188939218437787910 ~2002
1092195899218439179910 ~2002
1092214499218442899910 ~2002
1092223631218444726310 ~2002
1092251579218450315910 ~2002
1092252803218450560710 ~2002
1092255407873804325710 ~2003
1092258383218451676710 ~2002
1092286121873828896910 ~2003
1092317123218463424710 ~2002
1092320219218464043910 ~2002
1092330119218466023910 ~2002
10923445811747751329711 ~2004
1092348443218469688710 ~2002
10924506372621881528911 ~2004
1092459793655475875910 ~2003
1092517511218503502310 ~2002
Home
4.768.925 digits
e-mail
25-05-04