Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1084507559216901511910 ~2002
1084528883216905776710 ~2002
10845740471084574047111 ~2003
1084612799216922559910 ~2002
1084630763216926152710 ~2002
1084763411216952682310 ~2002
1084766759216953351910 ~2002
1084779119216955823910 ~2002
1084788863216957772710 ~2002
10848313271084831327111 ~2003
1084896479216979295910 ~2002
1084905119216981023910 ~2002
10849299074339719628111 ~2005
1084949303216989860710 ~2002
1084960031216992006310 ~2002
1084972943216994588710 ~2002
1085008139217001627910 ~2002
1085017573651010543910 ~2003
10850282536944180819311 ~2005
1085071919217014383910 ~2002
1085086657651051994310 ~2003
1085087039217017407910 ~2002
1085195711217039142310 ~2002
1085212343217042468710 ~2002
1085269033651161419910 ~2003
Exponent Prime Factor Digits Year
1085355263217071052710 ~2002
10853643071085364307111 ~2003
10854596532388011236711 ~2004
1085523119217104623910 ~2002
1085539439217107887910 ~2002
1085546519217109303910 ~2002
1085547371217109474310 ~2002
10855492072822427938311 ~2004
1085551283217110256710 ~2002
1085559383217111876710 ~2002
1085578811217115762310 ~2002
1085593493651356095910 ~2003
108559633913027156068112 ~2006
10856147111085614711111 ~2003
1085626403217125280710 ~2002
1085640203217128040710 ~2002
1085669219217133843910 ~2002
1085669951217133990310 ~2002
1085673383217134676710 ~2002
1085674511217134902310 ~2002
10857534911085753491111 ~2003
1085776031217155206310 ~2002
1085776781651466068710 ~2003
1085796863217159372710 ~2002
1085818763217163752710 ~2002
Exponent Prime Factor Digits Year
1085828291217165658310 ~2002
1085834663217166932710 ~2002
1085849339217169867910 ~2002
1085865383217173076710 ~2002
10858659171520212283911 ~2004
10858886591954599586311 ~2004
1085903831217180766310 ~2002
1085930903217186180710 ~2002
1085953301651571980710 ~2003
1085982323217196464710 ~2002
1086008939217201787910 ~2002
1086017759217203551910 ~2002
1086064043217212808710 ~2002
1086127391217225478310 ~2002
1086168431217233686310 ~2002
1086177341868941872910 ~2003
1086201073651720643910 ~2003
1086225359217245071910 ~2002
10862452631737992420911 ~2004
1086259943217251988710 ~2002
108629568728678206136912 ~2007
1086301631217260326310 ~2002
1086343763217268752710 ~2002
1086351131217270226310 ~2002
1086359243217271848710 ~2002
Exponent Prime Factor Digits Year
1086375371217275074310 ~2002
1086397583217279516710 ~2002
1086415381651849228710 ~2003
1086421781869137424910 ~2003
1086423293651853975910 ~2003
1086501803217300360710 ~2002
1086564097651938458310 ~2003
1086569293651941575910 ~2003
1086591911217318382310 ~2002
1086605771217321154310 ~2002
1086627011217325402310 ~2002
1086693143217338628710 ~2002
1086698219217339643910 ~2002
10867390791956130342311 ~2004
1086754199217350839910 ~2002
1086795971217359194310 ~2002
1086801179217360235910 ~2002
1086805679217361135910 ~2002
1086870959217374191910 ~2002
1086878843217375768710 ~2002
1086884501652130700710 ~2003
1086903473652142083910 ~2003
1086909899217381979910 ~2002
1086936023217387204710 ~2002
1086942299869553839310 ~2003
Home
4.768.925 digits
e-mail
25-05-04