Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1070083799214016759910 ~2002
1070104433642062659910 ~2003
1070105903214021180710 ~2002
10701387173210416151111 ~2004
1070140271214028054310 ~2002
1070171363214034272710 ~2002
1070177651214035530310 ~2002
1070182583214036516710 ~2002
1070205413642123247910 ~2003
1070209271214041854310 ~2002
1070233403214046680710 ~2002
1070265023214053004710 ~2002
1070298457642179074310 ~2003
1070371259214074251910 ~2002
1070378051214075610310 ~2002
10703874431070387443111 ~2003
1070420473642252283910 ~2003
1070446271214089254310 ~2002
1070446451214089290310 ~2002
1070457551214091510310 ~2002
1070468411214093682310 ~2002
1070476619214095323910 ~2002
10704800872569152208911 ~2004
1070507831214101566310 ~2002
1070528581642317148710 ~2003
Exponent Prime Factor Digits Year
1070575199214115039910 ~2002
1070613779214122755910 ~2002
1070651363214130272710 ~2002
1070651651214130330310 ~2002
1070658503214131700710 ~2002
10706709591927207726311 ~2004
1070683597642410158310 ~2003
1070733971214146794310 ~2002
1070778011214155602310 ~2002
1070779691214155938310 ~2002
1070788753642473251910 ~2003
1070794379214158875910 ~2002
1070820623214164124710 ~2002
1070833019214166603910 ~2002
1070948363214189672710 ~2002
1071025019856820015310 ~2003
1071046103214209220710 ~2002
1071062123214212424710 ~2002
1071095783214219156710 ~2002
1071137183214227436710 ~2002
1071182771214236554310 ~2002
1071251003214250200710 ~2002
1071284579214256915910 ~2002
1071295139214259027910 ~2002
1071301079214260215910 ~2002
Exponent Prime Factor Digits Year
1071383051857106440910 ~2003
1071429119214285823910 ~2002
1071453731214290746310 ~2002
1071468791214293758310 ~2002
1071488471214297694310 ~2002
1071500603214300120710 ~2002
1071516623214303324710 ~2002
1071534617642920770310 ~2003
1071546877642928126310 ~2003
1071561989857249591310 ~2003
1071567551214313510310 ~2002
1071587243214317448710 ~2002
10715942333429101545711 ~2004
1071599939214319987910 ~2002
1071646619214329323910 ~2002
1071663793642998275910 ~2003
1071679139214335827910 ~2002
1071692711214338542310 ~2002
10716967511071696751111 ~2003
1071700403214340080710 ~2002
1071720193643032115910 ~2003
1071740699214348139910 ~2002
1071744203214348840710 ~2002
1071751559214350311910 ~2002
1071777923214355584710 ~2002
Exponent Prime Factor Digits Year
1071781283214356256710 ~2002
1071827723214365544710 ~2002
1071846683214369336710 ~2002
1071864011214372802310 ~2002
1071879863214375972710 ~2002
1071914411214382882310 ~2002
1071920351214384070310 ~2002
10719304391071930439111 ~2003
10719539471929517104711 ~2004
1071997691214399538310 ~2002
1072054979214410995910 ~2002
1072097759214419551910 ~2002
1072126397643275838310 ~2003
1072132343214426468710 ~2002
1072146359214429271910 ~2002
1072183883214436776710 ~2002
1072238159214447631910 ~2002
10722478631715596580911 ~2004
1072271171214454234310 ~2002
1072367459214473491910 ~2002
1072383863214476772710 ~2002
1072395041643437024710 ~2003
1072403999214480799910 ~2002
1072486451214497290310 ~2002
1072548611214509722310 ~2002
Home
4.724.182 digits
e-mail
25-04-13