Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
870944471174188894310 ~2001
870957931870957931110 ~2003
870969791174193958310 ~2001
871024403174204880710 ~2001
871025579174205115910 ~2001
871026011174205202310 ~2001
871062551174212510310 ~2001
871084477522650686310 ~2002
871084943174216988710 ~2001
871086691871086691110 ~2003
871099331174219866310 ~2001
871112321522667392710 ~2002
8711220731916468560711 ~2003
8711314331916489152711 ~2003
871148303174229660710 ~2001
871149131174229826310 ~2001
871199159174239831910 ~2001
871225559174245111910 ~2001
8712679792788057532911 ~2004
8712732111568291779911 ~2003
871273981522764388710 ~2002
87128405930843455688712 ~2006
871291097697032877710 ~2002
871314971174262994310 ~2001
8713159811394105569711 ~2003
Exponent Prime Factor Digits Year
871317977697054381710 ~2002
871320731174264146310 ~2001
871336451174267290310 ~2001
8713416717842075039111 ~2005
871377061522826236710 ~2002
871379303174275860710 ~2001
871381741522829044710 ~2002
871392479174278495910 ~2001
871394519174278903910 ~2001
8713952692091348645711 ~2003
871417139174283427910 ~2001
871446743174289348710 ~2001
871449779174289955910 ~2001
871453703174290740710 ~2001
871469233522881539910 ~2002
871469321522881592710 ~2002
871476863174295372710 ~2001
871477441522886464710 ~2002
871478771174295754310 ~2001
871501271174300254310 ~2001
871519079174303815910 ~2001
871526261522915756710 ~2002
871531931174306386310 ~2001
871581839174316367910 ~2001
871583759174316751910 ~2001
Exponent Prime Factor Digits Year
871586843174317368710 ~2001
871587719174317543910 ~2001
871588331174317666310 ~2001
871597631174319526310 ~2001
871603763174320752710 ~2001
871610879174322175910 ~2001
871637051174327410310 ~2001
871657543871657543110 ~2003
871661963174332392710 ~2001
871681781523009068710 ~2002
871720319174344063910 ~2001
871721423174344284710 ~2001
871759783871759783110 ~2003
871765589697412471310 ~2002
871794073523076443910 ~2002
871794779174358955910 ~2001
871801739174360347910 ~2001
871809173523085503910 ~2002
871821677523093006310 ~2002
871836011174367202310 ~2001
871836131174367226310 ~2001
871845239174369047910 ~2001
871846571697477256910 ~2002
871865363174373072710 ~2001
871866563174373312710 ~2001
Exponent Prime Factor Digits Year
871869959174373991910 ~2001
871877411174375482310 ~2001
871891619697513295310 ~2002
8719632911569533923911 ~2003
871990811174398162310 ~2001
872033663174406732710 ~2001
872042351174408470310 ~2001
8720773311569739195911 ~2003
872102519697682015310 ~2002
8721766374884189167311 ~2004
872180591174436118310 ~2001
872183519174436703910 ~2001
8722067632267737583911 ~2004
872212123872212123110 ~2003
872250527697800421710 ~2002
8723097596455092216711 ~2005
872322443174464488710 ~2001
872332283174466456710 ~2001
872334503174466900710 ~2001
87233766711863792271312 ~2005
872339339174467867910 ~2001
872348857523409314310 ~2002
872458799174491759910 ~2001
872465879174493175910 ~2001
872486711174497342310 ~2001
Home
4.768.925 digits
e-mail
25-05-04