Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
512852831102570566310 ~1999
5128537512153985754311 ~2002
512857451102571490310 ~1999
512859779102571955910 ~1999
512893763102578752710 ~1999
512941063512941063110 ~2001
512965283102593056710 ~1999
512983193718176470310 ~2001
513002543102600508710 ~1999
513036323102607264710 ~1999
513057179102611435910 ~1999
513091559410473247310 ~2001
513094073307856443910 ~2000
513096757307858054310 ~2000
513109559102621911910 ~1999
513109871102621974310 ~1999
513111373307866823910 ~2000
513129341307877604710 ~2000
513143303102628660710 ~1999
513172433307903459910 ~2000
513175511410540408910 ~2001
513187901410550320910 ~2001
5131888913387046680711 ~2003
513201959102640391910 ~1999
513212963102642592710 ~1999
Exponent Prime Factor Digits Year
513220139102644027910 ~1999
513253271102650654310 ~1999
513264443102652888710 ~1999
513264623102652924710 ~1999
513278273307966963910 ~2000
513315563102663112710 ~1999
513338821308003292710 ~2000
5133456733696088845711 ~2003
513372323102674464710 ~1999
513373079102674615910 ~1999
513374077308024446310 ~2000
513374111102674822310 ~1999
513375959102675191910 ~1999
513396761410717408910 ~2001
513423983102684796710 ~1999
513424799102684959910 ~1999
513425909410740727310 ~2001
5134312271232234944911 ~2002
513439463102687892710 ~1999
513442931102688586310 ~1999
513447793308068675910 ~2000
513452531102690506310 ~1999
513457597308074558310 ~2000
513461423102692284710 ~1999
513465143102693028710 ~1999
Exponent Prime Factor Digits Year
513471443102694288710 ~1999
513496331102699266310 ~1999
513512641308107584710 ~2000
513521681410817344910 ~2001
513534083102706816710 ~1999
513566519102713303910 ~1999
5135704672465138241711 ~2002
513572153308143291910 ~2000
513572933719002106310 ~2001
513607463102721492710 ~1999
513613663513613663110 ~2001
513615359102723071910 ~1999
513643633308186179910 ~2000
513644513308186707910 ~2000
5136619631232788711311 ~2002
513662557308197534310 ~2000
5136655431643729737711 ~2002
513666011102733202310 ~1999
5136665631643733001711 ~2002
513670639513670639110 ~2001
513689699102737939910 ~1999
513698233308218939910 ~2000
513719051102743810310 ~1999
513719057308231434310 ~2000
513719291102743858310 ~1999
Exponent Prime Factor Digits Year
513719603102743920710 ~1999
513767783102753556710 ~1999
513768011102753602310 ~1999
513783551102756710310 ~1999
5137853872568926935111 ~2002
513794753308276851910 ~2000
513797939102759587910 ~1999
513800543102760108710 ~1999
513802391102760478310 ~1999
513812653308287591910 ~2000
513817471924871447910 ~2001
513821999411057599310 ~2001
513829523102765904710 ~1999
513834719102766943910 ~1999
513849689411079751310 ~2001
513856319102771263910 ~1999
513879659102775931910 ~1999
513884543102776908710 ~1999
513909023102781804710 ~1999
513931871102786374310 ~1999
513948359102789671910 ~1999
513955319411164255310 ~2001
513962651102792530310 ~1999
5139654491541896347111 ~2002
513969191102793838310 ~1999
Home
5.187.277 digits
e-mail
25-11-17