Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
852005279170401055910 ~2001
8520112736816090184111 ~2005
8520379132044890991311 ~2003
852056603170411320710 ~2001
852066277511239766310 ~2002
852134963170426992710 ~2001
852151931170430386310 ~2001
852174539170434907910 ~2001
852193919681755135310 ~2002
852202271170440454310 ~2001
852203783170440756710 ~2001
852235213511341127910 ~2002
852235873511341523910 ~2002
852246133511347679910 ~2002
8522686218693139934311 ~2005
852279383170455876710 ~2001
852309061511385436710 ~2002
8523458171363753307311 ~2003
852392677511435606310 ~2002
852394667681915733710 ~2002
852424619170484923910 ~2001
852429497511457698310 ~2002
852432671170486534310 ~2001
852499871170499974310 ~2001
852513443170502688710 ~2001
Exponent Prime Factor Digits Year
852535811170507162310 ~2001
852542291170508458310 ~2001
852555923170511184710 ~2001
852595811170519162310 ~2001
852614783170522956710 ~2001
852618839170523767910 ~2001
852621683170524336710 ~2001
852629537511577722310 ~2002
852649991170529998310 ~2001
852653843170530768710 ~2001
852654107682123285710 ~2002
852657419170531483910 ~2001
852694379170538875910 ~2001
852740279170548055910 ~2001
852745451170549090310 ~2001
852760757682208605710 ~2002
852773477511664086310 ~2002
8527846332558353899111 ~2004
852800603170560120710 ~2001
852805703170561140710 ~2001
852808427682246741710 ~2002
852808679170561735910 ~2001
8528247171193954603911 ~2003
852858683170571736710 ~2001
852860843170572168710 ~2001
Exponent Prime Factor Digits Year
852862391682289912910 ~2002
852907043170581408710 ~2001
852945623170589124710 ~2001
852946019170589203910 ~2001
852952559170590511910 ~2001
852954131170590826310 ~2001
852985633511791379910 ~2002
853028279170605655910 ~2001
853052393511831435910 ~2002
853062443170612488710 ~2001
853083653511850191910 ~2002
853094591170618918310 ~2001
853096117511857670310 ~2002
853106939170621387910 ~2001
8531227333924364571911 ~2004
853153331170630666310 ~2001
8531686191535703514311 ~2003
853176539170635307910 ~2001
853179253511907551910 ~2002
853245719170649143910 ~2001
853247401511948440710 ~2002
853252259170650451910 ~2001
85325560719112925596912 ~2006
853270703170654140710 ~2001
853315679170663135910 ~2001
Exponent Prime Factor Digits Year
853317161511990296710 ~2002
853345859170669171910 ~2001
853348763170669752710 ~2001
853377881512026728710 ~2002
853426043170685208710 ~2001
8535031072219108078311 ~2003
853510103170702020710 ~2001
853530439853530439110 ~2002
8535481314097031028911 ~2004
853553951170710790310 ~2001
853557179170711435910 ~2001
853568819170713763910 ~2001
853579211170715842310 ~2001
85358114920485947576112 ~2006
853600031170720006310 ~2001
853653491170730698310 ~2001
853658843170731768710 ~2001
8537074931365931988911 ~2003
853735139170747027910 ~2001
853753403170750680710 ~2001
853755107683004085710 ~2002
8537897711366063633711 ~2003
8537916371366066619311 ~2003
853800191170760038310 ~2001
853811771170762354310 ~2001
Home
4.768.925 digits
e-mail
25-05-04