Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
639515963127903192710 ~2000
639520019127904003910 ~2000
6395629391534951053711 ~2002
639574139127914827910 ~2000
6396269836780046019911 ~2004
639633359127926671910 ~2000
639655091127931018310 ~2000
6396754091919026227111 ~2003
639734783127946956710 ~2000
639778319127955663910 ~2000
639795371127959074310 ~2000
639799571127959914310 ~2000
6398181074094835884911 ~2003
639830923639830923110 ~2001
639842213383905327910 ~2001
639865211127973042310 ~2000
639881701383929020710 ~2001
639883619127976723910 ~2000
639884939127976987910 ~2000
639884963127976992710 ~2000
6399042731535770255311 ~2002
639908411127981682310 ~2000
639932831127986566310 ~2000
6399561731535894815311 ~2002
639985919127997183910 ~2000
Exponent Prime Factor Digits Year
639990181383994108710 ~2001
639996871639996871110 ~2001
640008599128001719910 ~2000
640036499128007299910 ~2000
640044173896061842310 ~2002
640068083128013616710 ~2000
640098983128019796710 ~2000
640106711128021342310 ~2000
640111859128022371910 ~2000
640117811128023562310 ~2000
640125061384075036710 ~2001
640131683128026336710 ~2000
640144391128028878310 ~2000
640160879128032175910 ~2000
640170137512136109710 ~2001
640215479128043095910 ~2000
640229789512183831310 ~2001
640246091128049218310 ~2000
640247843128049568710 ~2000
640256783128051356710 ~2000
640263251128052650310 ~2000
640272131128054426310 ~2000
640277591128055518310 ~2000
640284299512227439310 ~2001
6403012032177024090311 ~2003
Exponent Prime Factor Digits Year
640326299128065259910 ~2000
640333931128066786310 ~2000
640341791128068358310 ~2000
6403462492433315746311 ~2003
640361179640361179110 ~2001
640365841384219504710 ~2001
640366057384219634310 ~2001
640391033384234619910 ~2001
640404503128080900710 ~2000
640407011128081402310 ~2000
640430369512344295310 ~2001
640432649512346119310 ~2001
640445423128089084710 ~2000
640454123128090824710 ~2000
64046230744704269028712 ~2006
640465537384279322310 ~2001
640466951128093390310 ~2000
640475861384285516710 ~2001
640491023128098204710 ~2000
640497007640497007110 ~2001
640503179128100635910 ~2000
640509547640509547110 ~2001
640520053384312031910 ~2001
640534799128106959910 ~2000
640554311512443448910 ~2001
Exponent Prime Factor Digits Year
640571663128114332710 ~2000
640612991128122598310 ~2000
640613111128122622310 ~2000
640618661384371196710 ~2001
640631819512505455310 ~2001
640638023128127604710 ~2000
640643651128128730310 ~2000
640710683128142136710 ~2000
640749899128149979910 ~2000
6407626671537830400911 ~2002
640771583128154316710 ~2000
640793603128158720710 ~2000
6408127191153462894311 ~2002
640820819128164163910 ~2000
640821197384492718310 ~2001
640827073384496243910 ~2001
640847243128169448710 ~2000
640855643128171128710 ~2000
640869191128173838310 ~2000
640945273384567163910 ~2001
6409653591153737646311 ~2002
640967111128193422310 ~2000
640983659128196731910 ~2000
640986191128197238310 ~2000
641006939128201387910 ~2000
Home
4.768.925 digits
e-mail
25-05-04