Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
634970711126994142310 ~2000
634987583126997516710 ~2000
634991501507993200910 ~2001
635001431127000286310 ~2000
635010269508008215310 ~2001
635023463127004692710 ~2000
635033573889047002310 ~2002
635038513381023107910 ~2001
635049983127009996710 ~2000
635074337381044602310 ~2001
635103191127020638310 ~2000
635133743127026748710 ~2000
635202371127040474310 ~2000
635211299127042259910 ~2000
635298659127059731910 ~2000
635299559127059911910 ~2000
6353176191524762285711 ~2002
635318513381191107910 ~2001
635325611127065122310 ~2000
635335703127067140710 ~2000
635344943127068988710 ~2000
635352911508282328910 ~2001
635355863127071172710 ~2000
635387411127077482310 ~2000
635390543127078108710 ~2000
Exponent Prime Factor Digits Year
635407343127081468710 ~2000
635478383127095676710 ~2000
6354841073050323713711 ~2003
635487791127097558310 ~2000
635513783127102756710 ~2000
635514959127102991910 ~2000
6355375692542150276111 ~2003
635552699127110539910 ~2000
635564443635564443110 ~2001
635583323127116664710 ~2000
635598059127119611910 ~2000
635605199127121039910 ~2000
635639723127127944710 ~2000
635648423127129684710 ~2000
635652623127130524710 ~2000
635665931127133186310 ~2000
635688299127137659910 ~2000
6357036176102754723311 ~2004
6357187031525724887311 ~2002
6357428512034377123311 ~2003
635749091508599272910 ~2001
635773679127154735910 ~2000
6357799394068991609711 ~2003
635782139127156427910 ~2000
635783303127156660710 ~2000
Exponent Prime Factor Digits Year
635788943127157788710 ~2000
635790893890107250310 ~2002
635798063127159612710 ~2000
635801291127160258310 ~2000
635814551127162910310 ~2000
635836199127167239910 ~2000
6358806071017408971311 ~2002
635891261381534756710 ~2001
6359000772925140354311 ~2003
635908211127181642310 ~2000
635916371127183274310 ~2000
63591723112209610835312 ~2005
635918707635918707110 ~2001
635924519127184903910 ~2000
635930759127186151910 ~2000
635934983127186996710 ~2000
635937271635937271110 ~2001
635950751127190150310 ~2000
635954159508763327310 ~2001
635960579127192115910 ~2000
63596401912846473183912 ~2005
635965619127193123910 ~2000
635966819127193363910 ~2000
635979181381587508710 ~2001
6360046432035214857711 ~2003
Exponent Prime Factor Digits Year
636010811127202162310 ~2000
636012563127202512710 ~2000
636037403127207480710 ~2000
636066131127213226310 ~2000
636071617381642970310 ~2001
636080201508864160910 ~2001
636088513381653107910 ~2001
636092969508874375310 ~2001
636093179127218635910 ~2000
636093203127218640710 ~2000
636117193381670315910 ~2001
636123083127224616710 ~2000
636136103127227220710 ~2000
636149471127229894310 ~2000
636163481508930784910 ~2001
636170459127234091910 ~2000
636172919127234583910 ~2000
636178223127235644710 ~2000
636183923127236784710 ~2000
636193223127238644710 ~2000
6361989491526877477711 ~2002
636199643127239928710 ~2000
636202559127240511910 ~2000
636206183127241236710 ~2000
636216011127243202310 ~2000
Home
4.768.925 digits
e-mail
25-05-04