Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
629099651125819930310 ~2000
629105651125821130310 ~2000
629108423125821684710 ~2000
629122919125824583910 ~2000
629123711125824742310 ~2000
629145479125829095910 ~2000
629146121503316896910 ~2001
629147657377488594310 ~2001
629152571125830514310 ~2000
629163071125832614310 ~2000
629180933377508559910 ~2001
629189279125837855910 ~2000
629191379125838275910 ~2000
629218081377530848710 ~2001
629266031125853206310 ~2000
629277193377566315910 ~2001
629286071125857214310 ~2000
629304209503443367310 ~2001
629307671125861534310 ~2000
629324771125864954310 ~2000
629354717377612830310 ~2001
6293646011384602122311 ~2002
629403953377642371910 ~2001
629452283125890456710 ~2000
629475299125895059910 ~2000
Exponent Prime Factor Digits Year
629480933377688559910 ~2001
629490131125898026310 ~2000
629493659125898731910 ~2000
629498483125899696710 ~2000
629528591125905718310 ~2000
6296040714533149311311 ~2004
629616899125923379910 ~2000
629622443125924488710 ~2000
629628683125925736710 ~2000
629640311125928062310 ~2000
629644451125928890310 ~2000
629679863125935972710 ~2000
629690783125938156710 ~2000
629695523125939104710 ~2000
629698739125939747910 ~2000
629737259125947451910 ~2000
629786099125957219910 ~2000
629788199125957639910 ~2000
629836841377902104710 ~2001
629850233377910139910 ~2001
629867159125973431910 ~2000
629931077377958646310 ~2001
629947511125989502310 ~2000
629959529881943340710 ~2002
629959621377975772710 ~2001
Exponent Prime Factor Digits Year
629985179125997035910 ~2000
629986079125997215910 ~2000
629991077377994646310 ~2001
629996903125999380710 ~2000
630000323126000064710 ~2000
630007463126001492710 ~2000
630008837378005302310 ~2001
630014831126002966310 ~2000
630029243126005848710 ~2000
630041543126008308710 ~2000
630046187504036949710 ~2001
630068039126013607910 ~2000
630095171126019034310 ~2000
6300954071134171732711 ~2002
630110639126022127910 ~2000
630117599126023519910 ~2000
630123317504098653710 ~2001
630159251126031850310 ~2000
630190091126038018310 ~2000
630192763630192763110 ~2001
630218969504175175310 ~2001
630239783126047956710 ~2000
630244019126048803910 ~2000
630245243126049048710 ~2000
630250343126050068710 ~2000
Exponent Prime Factor Digits Year
630294719126058943910 ~2000
630312503126062500710 ~2000
630339313378203587910 ~2001
630365591126073118310 ~2000
630400271126080054310 ~2000
6304041911008646705711 ~2002
630429179126085835910 ~2000
6304576371891372911111 ~2003
630466631126093326310 ~2000
630475691126095138310 ~2000
630481919126096383910 ~2000
630485123126097024710 ~2000
630493013378295807910 ~2001
630497363126099472710 ~2000
6305111634539680373711 ~2004
630511391126102278310 ~2000
630518891126103778310 ~2000
630530891126106178310 ~2000
630532379126106475910 ~2000
630535739126107147910 ~2000
630541979126108395910 ~2000
630565319126113063910 ~2000
630565571126113114310 ~2000
630566903126113380710 ~2000
630567593378340555910 ~2001
Home
4.768.925 digits
e-mail
25-05-04