Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
508658879101731775910 ~1999
508669883101733976710 ~1999
508687559101737511910 ~1999
508700399101740079910 ~1999
508736699101747339910 ~1999
508751879101750375910 ~1999
508771031101754206310 ~1999
508777891508777891110 ~2001
508790591101758118310 ~1999
508802681407042144910 ~2000
508805723101761144710 ~1999
508807763101761552710 ~1999
5088085696105702828111 ~2003
5088213772747635435911 ~2003
508830853305298511910 ~2000
508847263814155620910 ~2001
508849613305309767910 ~2000
508852919101770583910 ~1999
508853641305312184710 ~2000
508853903101770780710 ~1999
508879571101775914310 ~1999
508887959101777591910 ~1999
508929539101785907910 ~1999
508972463101794492710 ~1999
508983019508983019110 ~2001
Exponent Prime Factor Digits Year
509020703101804140710 ~1999
509022623101804524710 ~1999
509036903101807380710 ~1999
509041139101808227910 ~1999
509044799101808959910 ~1999
509051897407241517710 ~2000
509060459101812091910 ~1999
509072171101814434310 ~1999
509074151101814830310 ~1999
5091036111323669388711 ~2002
509159879101831975910 ~1999
509171111101834222310 ~1999
509184757814695611310 ~2001
509186939101837387910 ~1999
509190191101838038310 ~1999
509197043101839408710 ~1999
509204099101840819910 ~1999
509204963101840992710 ~1999
509226701407381360910 ~2000
509233379101846675910 ~1999
509236943101847388710 ~1999
509256311101851262310 ~1999
509293619101858723910 ~1999
5093105531222345327311 ~2002
509313503101862700710 ~1999
Exponent Prime Factor Digits Year
509313719407450975310 ~2000
5093260931120517404711 ~2002
509327183101865436710 ~1999
509332331101866466310 ~1999
50934068336672529176112 ~2005
509357759101871551910 ~1999
509363411101872682310 ~1999
509378357305627014310 ~2000
509386949407509559310 ~2000
509388179101877635910 ~1999
509390963101878192710 ~1999
509395151101879030310 ~1999
509397989713157184710 ~2001
509402759101880551910 ~1999
509421551101884310310 ~1999
509430923101886184710 ~1999
509441519101888303910 ~1999
509443463101888692710 ~1999
5094468011120782962311 ~2002
509461919101892383910 ~1999
509465113305679067910 ~2000
509482997407586397710 ~2000
509506703101901340710 ~1999
509530121407624096910 ~2000
509539571101907914310 ~1999
Exponent Prime Factor Digits Year
509549171101909834310 ~1999
509551597305730958310 ~2000
5095678932038271572111 ~2002
509586817305752090310 ~2000
509589149713424808710 ~2001
509623511101924702310 ~1999
509626441305775864710 ~2000
509659019101931803910 ~1999
509662343101932468710 ~1999
509676059101935211910 ~1999
509682359101936471910 ~1999
509703143101940628710 ~1999
509714171101942834310 ~1999
509715191101943038310 ~1999
509717671815548273710 ~2001
509733239101946647910 ~1999
509756473305853883910 ~2000
509757623101951524710 ~1999
509777519101955503910 ~1999
5097962112039184844111 ~2002
509823131101964626310 ~1999
509832623101966524710 ~1999
509866859101973371910 ~1999
509880977713833367910 ~2001
509897539917815570310 ~2001
Home
4.888.230 digits
e-mail
25-06-29