Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
528071039105614207910 ~1999
528071213316842727910 ~2000
528084443105616888710 ~1999
528084731105616946310 ~1999
528109259105621851910 ~1999
528117431105623486310 ~1999
528119099105623819910 ~1999
528128771422503016910 ~2001
528137399105627479910 ~1999
528155393316893235910 ~2000
528162863105632572710 ~1999
528170261316902156710 ~2000
528174197739443875910 ~2001
528180311105636062310 ~1999
528182243105636448710 ~1999
528182323528182323110 ~2001
528229379105645875910 ~1999
528284063105656812710 ~1999
528288119105657623910 ~1999
528296831105659366310 ~1999
528298019105659603910 ~1999
528302477739623467910 ~2001
528314411105662882310 ~1999
528333623105666724710 ~1999
528369421845391073710 ~2001
Exponent Prime Factor Digits Year
528383861422707088910 ~2001
528385859105677171910 ~1999
528394679105678935910 ~1999
528397091105679418310 ~1999
528412433317047459910 ~2000
528453539422762831310 ~2001
528458363105691672710 ~1999
528477731105695546310 ~1999
528486911105697382310 ~1999
528492493317095495910 ~2000
528514081317108448710 ~2000
528543737422834989710 ~2001
528569963105713992710 ~1999
528578159105715631910 ~1999
528579119105715823910 ~1999
528591373317154823910 ~2000
528595559105719111910 ~1999
528621959105724391910 ~1999
5286240732114496292111 ~2002
528637691105727538310 ~1999
528644531105728906310 ~1999
528649763105729952710 ~1999
528654323105730864710 ~1999
528674141317204484710 ~2000
528676277317205766310 ~2000
Exponent Prime Factor Digits Year
528684917422947933710 ~2001
5287191833912521954311 ~2003
528721031105744206310 ~1999
528721883105744376710 ~1999
528726593317235955910 ~2000
528734903105746980710 ~1999
528741431105748286310 ~1999
528746369740244916710 ~2001
528749447422999557710 ~2001
528752171423001736910 ~2001
528752363105750472710 ~1999
528764759105752951910 ~1999
5287839672115135868111 ~2002
528795497317277298310 ~2000
5287966331163352592711 ~2002
528796811105759362310 ~1999
528808979105761795910 ~1999
528809483105761896710 ~1999
528812411105762482310 ~1999
528820871105764174310 ~1999
528825431105765086310 ~1999
528836831105767366310 ~1999
528850859105770171910 ~1999
528852539105770507910 ~1999
528857603105771520710 ~1999
Exponent Prime Factor Digits Year
528905543105781108710 ~1999
528908183105781636710 ~1999
528922463105784492710 ~1999
528930383105786076710 ~1999
528954659105790931910 ~1999
528956531105791306310 ~1999
528980099105796019910 ~1999
528981671105796334310 ~1999
528999467423199573710 ~2001
529001411105800282310 ~1999
529021949740630728710 ~2001
5290222519839813868711 ~2004
529029913317417947910 ~2000
529067879105813575910 ~1999
5290833831375616795911 ~2002
529105019105821003910 ~1999
529108319105821663910 ~1999
529149611105829922310 ~1999
529158659105831731910 ~1999
529173311105834662310 ~1999
529174601317504760710 ~2000
529180441846688705710 ~2001
529188371105837674310 ~1999
529193471105838694310 ~1999
529207153317524291910 ~2000
Home
4.768.925 digits
e-mail
25-05-04