Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
504831839100966367910 ~1999
504847823100969564710 ~1999
504849491100969898310 ~1999
504862031100972406310 ~1999
504869303100973860710 ~1999
504884531100976906310 ~1999
5048986611514695983111 ~2002
504901333302940799910 ~2000
5049037333231383891311 ~2003
504907961302944776710 ~2000
504910403100982080710 ~1999
504912371100982474310 ~1999
504917279100983455910 ~1999
504939971100987994310 ~1999
504955043100991008710 ~1999
504956339100991267910 ~1999
504967817403974253710 ~2000
504968591100993718310 ~1999
504978671100995734310 ~1999
505000103101000020710 ~1999
505011791101002358310 ~1999
505018859101003771910 ~1999
505038617303023170310 ~2000
5050484033636348501711 ~2003
505050067505050067110 ~2001
Exponent Prime Factor Digits Year
505055267404044213710 ~2000
505060379101012075910 ~1999
505067483101013496710 ~1999
505068737404054989710 ~2000
505085771101017154310 ~1999
505089419101017883910 ~1999
505101071101020214310 ~1999
505106093303063655910 ~2000
505119973808191956910 ~2001
505164059101032811910 ~1999
505165957808265531310 ~2001
5051663291111365923911 ~2002
505169123101033824710 ~1999
505172819101034563910 ~1999
505174391101034878310 ~1999
505180163101036032710 ~1999
505191119101038223910 ~1999
505205777303123466310 ~2000
505207201303124320710 ~2000
505216667404173333710 ~2000
505249573303149743910 ~2000
505252211404201768910 ~2000
505259603101051920710 ~1999
505292261404233808910 ~2000
505307531101061506310 ~1999
Exponent Prime Factor Digits Year
505309163101061832710 ~1999
505314119101062823910 ~1999
5053207191617026300911 ~2002
50533504313340845135312 ~2004
505355017303213010310 ~2000
505422761303253656710 ~2000
505447703101089540710 ~1999
505449881303269928710 ~2000
505466711101093342310 ~1999
505477391101095478310 ~1999
505487771101097554310 ~1999
505496951101099390310 ~1999
505515203101103040710 ~1999
505519957303311974310 ~2000
505545563101109112710 ~1999
505551671101110334310 ~1999
505553771101110754310 ~1999
505554503101110900710 ~1999
505563101404450480910 ~2000
505565831404452664910 ~2000
505567511101113502310 ~1999
5055794098493734071311 ~2004
505583737808933979310 ~2001
50558598131447448018312 ~2005
505595227505595227110 ~2001
Exponent Prime Factor Digits Year
505617503101123500710 ~1999
505633519505633519110 ~2001
505644959101128991910 ~1999
505646423101129284710 ~1999
505653563101130712710 ~1999
505678163101135632710 ~1999
5056972331213673359311 ~2002
505698161303418896710 ~2000
505714343101142868710 ~1999
505717829404574263310 ~2000
505736579101147315910 ~1999
505742663101148532710 ~1999
505743779101148755910 ~1999
505766879101153375910 ~1999
505786331101157266310 ~1999
505788047404630437710 ~2000
505798571101159714310 ~1999
505802653303481591910 ~2000
505812479910462462310 ~2001
5058310093945481870311 ~2003
505831451101166290310 ~1999
505863971101172794310 ~1999
505876571101175314310 ~1999
505880051101176010310 ~1999
505902557303541534310 ~2000
Home
4.768.925 digits
e-mail
25-05-04