Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4316230918632461839 ~1998
4316316718632633439 ~1998
4316651638633303279 ~1998
4316722438633444879 ~1998
4316787718633575439 ~1998
4316813038633626079 ~1998
4316904118633808239 ~1998
4317003238634006479 ~1998
431726507345381205710 ~2000
4317387118634774239 ~1998
431747221259048332710 ~2000
4317485398634970799 ~1998
4317531238635062479 ~1998
431753731777156715910 ~2001
431759533259055719910 ~2000
4317715918635431839 ~1998
4317756118635512239 ~1998
4318025518636051039 ~1998
4318039631468133474311 ~2001
4318134118636268239 ~1998
4318425118636850239 ~1998
4318491238636982479 ~1998
431849213259109527910 ~2000
4318573198637146399 ~1998
4318828318637656639 ~1998
Exponent Prime Factor Digits Year
431884213259130527910 ~2000
4318868038637736079 ~1998
4318919038637838079 ~1998
4319025118638050239 ~1998
4319236198638472399 ~1998
4319332318638664639 ~1998
432004613259202767910 ~2000
4320106438640212879 ~1998
4320199191814483659911 ~2002
4320236998640473999 ~1998
4320385918640771839 ~1998
4320476998640953999 ~1998
4320613918641227839 ~1998
4320635638641271279 ~1998
4320673798641347599 ~1998
432086233259251739910 ~2000
4320937198641874399 ~1998
4320972238641944479 ~1998
432102457259261474310 ~2000
4321199398642398799 ~1998
4321200831814904348711 ~2002
4321209118642418239 ~1998
4321234918642469839 ~1998
4321256518642513039 ~1998
432127831691404529710 ~2001
Exponent Prime Factor Digits Year
4321435318642870639 ~1998
4321584238643168479 ~1998
432209807345767845710 ~2000
4322233918644467839 ~1998
4322271118644542239 ~1998
4322300638644601279 ~1998
4322387398644774799 ~1998
4322501038645002079 ~1998
4322556118645112239 ~1998
4322569318645138639 ~1998
4322700718645401439 ~1998
4322810398645620799 ~1998
432294971345835976910 ~2000
432297997691676795310 ~2001
432300553259380331910 ~2000
4323020638646041279 ~1998
4323243118646486239 ~1998
4323347398646694799 ~1998
4323399838646799679 ~1998
4323428038646856079 ~1998
4323475438646950879 ~1998
432347561345878048910 ~2000
4323643198647286399 ~1998
4323694198647388399 ~1998
4323942118647884239 ~1998
Exponent Prime Factor Digits Year
4323988918647977839 ~1998
432409301345927440910 ~2000
4324101838648203679 ~1998
432410369605374516710 ~2001
4324159798648319599 ~1998
4324184398648368799 ~1998
432419173259451503910 ~2000
432429661259457796710 ~2000
4324541038649082079 ~1998
4324941238649882479 ~1998
432511873259507123910 ~2000
432521161692033857710 ~2001
432537257605552159910 ~2001
4325433838650867679 ~1998
432549641259529784710 ~2000
4325533438651066879 ~1998
4325649118651298239 ~1998
4325689198651378399 ~1998
432585001259551000710 ~2000
4325905198651810399 ~1998
432592781259555668710 ~2000
4325946718651893439 ~1998
4326288118652576239 ~1998
4326504838653009679 ~1998
432655243432655243110 ~2000
Home
4.768.925 digits
e-mail
25-05-04