Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4178886838357773679 ~1998
4178907238357814479 ~1998
417897713250738627910 ~1999
4178984998357969999 ~1998
4179122638358245279 ~1998
4179126118358252239 ~1998
4179228598358457199 ~1998
4179230398358460799 ~1998
4179474598358949199 ~1998
4179620638359241279 ~1998
4179718198359436399 ~1998
4179743518359487039 ~1998
417984373250790623910 ~1999
417991751752385151910 ~2001
418028987334423189710 ~2000
418045057250827034310 ~1999
4180554718361109439 ~1998
418068341334454672910 ~2000
4180893838361787679 ~1998
418093547334474837710 ~2000
4180982518361965039 ~1998
4181007471087061942311 ~2001
418107337250864402310 ~1999
4181087638362175279 ~1998
4181094238362188479 ~1998
Exponent Prime Factor Digits Year
4181116931254335079111 ~2001
4181419318362838639 ~1998
4181495518362991039 ~1998
418149841669039745710 ~2001
418150171418150171110 ~2000
4181526191421718904711 ~2001
418157281250894368710 ~1999
4181636398363272799 ~1998
418166213250899727910 ~1999
4181686071003604656911 ~2001
4181942518363885039 ~1998
4181993998363987999 ~1998
418231181250938708710 ~1999
4182399118364798239 ~1998
4182409616273614415111 ~2003
4182530638365061279 ~1998
4182671638365343279 ~1998
4182757798365515599 ~1998
4182848038365696079 ~1998
4182882598365765199 ~1998
4183061518366123039 ~1998
418306697334645357710 ~2000
418313191752963743910 ~2001
418319197250991518310 ~1999
4183284838366569679 ~1998
Exponent Prime Factor Digits Year
4183288318366576639 ~1998
418332973250999783910 ~1999
4183370998366741999 ~1998
4183708198367416399 ~1998
4183968598367937199 ~1998
4184005798368011599 ~1998
4184066038368132079 ~1998
4184124118368248239 ~1998
4184145718368291439 ~1998
4184145838368291679 ~1998
4184246038368492079 ~1998
4184501998369003999 ~1998
418453681251072208710 ~1999
4184563318369126639 ~1998
4184600518369201039 ~1998
4184625718369251439 ~1998
4184633998369267999 ~1998
4184748838369497679 ~1998
418475129585865180710 ~2000
418477177251086306310 ~1999
4184927038369854079 ~1998
4185010731004402575311 ~2001
418502521251101512710 ~1999
4185544318371088639 ~1998
4185889318371778639 ~1998
Exponent Prime Factor Digits Year
418600453251160271910 ~1999
4186086118372172239 ~1998
4186206111088413588711 ~2001
4186268398372536799 ~1998
4186311598372623199 ~1998
4186446838372893679 ~1998
4186447318372894639 ~1998
4186578598373157199 ~1998
418663171418663171110 ~2000
418671179334936943310 ~2000
418717147753690864710 ~2001
4187242798374485599 ~1998
4187457118374914239 ~1998
4187514238375028479 ~1998
418760681335008544910 ~2000
4187850718375701439 ~1998
4187916838375833679 ~1998
418793737251276242310 ~1999
418804697251282818310 ~1999
418822841251293704710 ~1999
418831913251299147910 ~1999
4188359032345481056911 ~2002
4188487093015710704911 ~2002
4188516238377032479 ~1998
418861813251317087910 ~1999
Home
4.768.925 digits
e-mail
25-05-04