Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4151770198303540399 ~1998
4151799838303599679 ~1998
415185107332148085710 ~2000
4151949118303898239 ~1998
4151968918303937839 ~1998
4152064798304129599 ~1998
4152094612325172981711 ~2002
415218121249130872710 ~1999
4152227638304455279 ~1998
4152231118304462239 ~1998
4152447598304895199 ~1998
415252493249151495910 ~1999
4152602038305204079 ~1998
415266877249160126310 ~1999
415273627747492528710 ~2001
4153064398306128799 ~1998
415313447332250757710 ~2000
415318147415318147110 ~2000
415321979332257583310 ~2000
415337023996808855310 ~2001
4153494198390058263911 ~2003
4153715638307431279 ~1998
4153811998307623999 ~1998
4153812238307624479 ~1998
4153944718307889439 ~1998
Exponent Prime Factor Digits Year
415419317249251590310 ~1999
4154246518308493039 ~1998
4154295838308591679 ~1998
415446817249268090310 ~1999
415448897249269338310 ~1999
4154929198309858399 ~1998
4154929918309859839 ~1998
4154934238309868479 ~1998
415497653249298591910 ~1999
4155005991745102515911 ~2002
4155095094238196991911 ~2002
4155179518310359039 ~1998
4155206398310412799 ~1998
415531829997276389710 ~2001
415536509332429207310 ~2000
4155709318311418639 ~1998
415588457332470765710 ~2000
4155985318311970639 ~1998
4156188238312376479 ~1998
4156238638312477279 ~1998
4156254598312509199 ~1998
4156515598313031199 ~1998
4156633318313266639 ~1998
4156643638313287279 ~1998
4156845838313691679 ~1998
Exponent Prime Factor Digits Year
415692793997662703310 ~2001
415695017332556013710 ~2000
4157195998314391999 ~1998
415742513249445507910 ~1999
4157588038315176079 ~1998
415770841249462504710 ~1999
4157719918315439839 ~1998
415786013582100418310 ~2000
415798333665277332910 ~2001
4158319438316638879 ~1998
415853491748536283910 ~2001
4158551038317102079 ~1998
4158613438317226879 ~1998
4158658198317316399 ~1998
4158829798317659599 ~1998
4159051318318102639 ~1998
41590519910979897253712 ~2004
4159078931663631572111 ~2001
4159195798318391599 ~1998
415920511415920511110 ~2000
4159330798318661599 ~1998
4159344238318688479 ~1998
4159435198318870399 ~1998
4159522198319044399 ~1998
4159583518319167039 ~1998
Exponent Prime Factor Digits Year
4159682518319365039 ~1998
415968893582356450310 ~2000
415978793582370310310 ~2000
415983721249590232710 ~1999
4159868038319736079 ~1998
4159928518319857039 ~1998
4160155438320310879 ~1998
4160210038320420079 ~1998
416022869582432016710 ~2000
4160273998320547999 ~1998
4160339398320678799 ~1998
416036867748866360710 ~2001
4160375518320751039 ~1998
416041559748874806310 ~2001
416046329998511189710 ~2001
4160554438321108879 ~1998
416060387332848309710 ~2000
4160604838321209679 ~1998
4160612518321225039 ~1998
416062121249637272710 ~1999
416063953249638371910 ~1999
416072117249643270310 ~1999
4160867398321734799 ~1998
4161185511331579363311 ~2001
4161286318322572639 ~1998
Home
4.768.925 digits
e-mail
25-05-04