Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4123402318246804639 ~1998
4123513438247026879 ~1998
4123598518247197039 ~1998
4123906918247813839 ~1998
4123915198247830399 ~1998
412395281247437168710 ~1999
412400171329920136910 ~2000
412425103412425103110 ~2000
4124266438248532879 ~1998
412431479329945183310 ~2000
4124550838249101679 ~1998
4124644438249288879 ~1998
4124810398249620799 ~1998
412499693989999263310 ~2001
412500617577500863910 ~2000
4125043438250086879 ~1998
4125179518250359039 ~1998
412518761330015008910 ~2000
4125365638250731279 ~1998
4125389398250778799 ~1998
4125567598251135199 ~1998
4125670918251341839 ~1998
412585807412585807110 ~2000
4125867118251734239 ~1998
4125927598251855199 ~1998
Exponent Prime Factor Digits Year
4126113238252226479 ~1998
4126118518252237039 ~1998
412612903412612903110 ~2000
4126138918252277839 ~1998
412616719412616719110 ~2000
412640567330112453710 ~2000
412643761247586256710 ~1999
412656067990374560910 ~2001
4126570798253141599 ~1998
4126672436685209336711 ~2003
4126672918253345839 ~1998
4126899838253799679 ~1998
4127122918254245839 ~1998
4127258998254517999 ~1998
4127284737511658208711 ~2003
4127309631733470044711 ~2002
4127385838254771679 ~1998
412748507330198805710 ~2000
4127576518255153039 ~1998
4127676118255352239 ~1998
4127915638255831279 ~1998
4127946532229091126311 ~2002
4127977798255955599 ~1998
412821833247693099910 ~1999
4128260038256520079 ~1998
Exponent Prime Factor Digits Year
4128359038256718079 ~1998
4128547318257094639 ~1998
4128723598257447199 ~1998
4128771838257543679 ~1998
412896179330316943310 ~2000
4128998638257997279 ~1998
4129033918258067839 ~1998
4129040398258080799 ~1998
412904759330323807310 ~2000
4129306918258613839 ~1998
412967197247780318310 ~1999
4129757571569307876711 ~2001
412980781247788468710 ~1999
412985473247791283910 ~1999
4129884238259768479 ~1998
4129895398259790799 ~1998
4130098798260197599 ~1998
4130343838260687679 ~1998
4130413798260827599 ~1998
4130467798260935599 ~1998
4130615891652246356111 ~2001
41306655116853115280912 ~2004
413087681247852608710 ~1999
4131027732230754974311 ~2002
4131046198262092399 ~1998
Exponent Prime Factor Digits Year
4131216718262433439 ~1998
4131220438262440879 ~1998
413131111413131111110 ~2000
4131421798262843599 ~1998
4131518038263036079 ~1998
413197723413197723110 ~2000
4132095238264190479 ~1998
413219693247931815910 ~1999
4132234918264469839 ~1998
4132238038264476079 ~1998
41322530328099320604112 ~2004
4132489918264979839 ~1998
413269889330615911310 ~2000
4132701718265403439 ~1998
4132797718265595439 ~1998
413297609330638087310 ~2000
413302301247981380710 ~1999
4133199838266399679 ~1998
413322053247993231910 ~1999
413325001247995000710 ~1999
413338669909345071910 ~2001
4133426038266852079 ~1998
413359237248015542310 ~1999
4133606638267213279 ~1998
4133700718267401439 ~1998
Home
4.768.925 digits
e-mail
25-05-04