Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4022409118044818239 ~1998
402242447321793957710 ~2000
4022464198044928399 ~1998
4022497918044995839 ~1998
402253301241351980710 ~1999
4022533438045066879 ~1998
4022651638045303279 ~1998
4022681038045362079 ~1998
402276377241365826310 ~1999
4022836438045672879 ~1998
4022907838045815679 ~1998
402291727402291727110 ~2000
402299411321839528910 ~2000
4023010198046020399 ~1998
402301187321840949710 ~2000
4023159718046319439 ~1998
4023217438046434879 ~1998
4023319918046639839 ~1998
4023335398046670799 ~1998
402364673241418803910 ~1999
402391303402391303110 ~2000
4024000798048001599 ~1998
402406601321925280910 ~2000
4024087918048175839 ~1998
4024150438048300879 ~1998
Exponent Prime Factor Digits Year
4024200718048401439 ~1998
4024228438048456879 ~1998
402435889885358955910 ~2001
402438833241463299910 ~1999
4024404118048808239 ~1998
4024497598048995199 ~1998
4024603932173286122311 ~2002
4024609318049218639 ~1998
4024884598049769199 ~1998
4024908838049817679 ~1998
402501677241501006310 ~1999
4025027038050054079 ~1998
4025145238050290479 ~1998
402520561241512336710 ~1999
4025226238050452479 ~1998
402533381322026704910 ~2000
402534697241520818310 ~1999
4025660638051321279 ~1998
4025709118051418239 ~1998
402597367402597367110 ~2000
4025993998051987999 ~1998
4026009118052018239 ~1998
402605261322084208910 ~2000
402606157241563694310 ~1999
402613753241568251910 ~1999
Exponent Prime Factor Digits Year
4026203638052407279 ~1998
4026204838052409679 ~1998
4026232312013116155111 ~2002
402626899402626899110 ~2000
4026502918053005839 ~1998
4026578091530099674311 ~2001
4026812398053624799 ~1998
4026865198053730399 ~1998
4026888171208066451111 ~2001
4026894496765182743311 ~2003
4026979438053958879 ~1998
4027053118054106239 ~1998
4027102798054205599 ~1998
402710879322168703310 ~2000
4027244638054489279 ~1998
4027315198054630399 ~1998
4027325038054650079 ~1998
402747791322198232910 ~2000
402766277322213021710 ~2000
4027771318055542639 ~1998
4027802998055605999 ~1998
4027815238055630479 ~1998
4027892518055785039 ~1998
4028062318056124639 ~1998
402806237322244989710 ~2000
Exponent Prime Factor Digits Year
402814007322251205710 ~2000
4028154711047320224711 ~2001
4028365798056731599 ~1998
402837251322269800910 ~2000
4028378638056757279 ~1998
4028481118056962239 ~1998
4028613118057226239 ~1998
4028671318057342639 ~1998
4028694718057389439 ~1998
402885817241731490310 ~1999
4028929918057859839 ~1998
402896009322316807310 ~2000
4029072238058144479 ~1998
402920173241752103910 ~1999
4029452398058904799 ~1998
402973847967137232910 ~2001
4029829918059659839 ~1998
4029932638059865279 ~1998
4029963718059927439 ~1998
4029990118059980239 ~1998
4030190638060381279 ~1998
4030424998060849999 ~1998
4030498918060997839 ~1998
403068689564296164710 ~2000
4030812238061624479 ~1998
Home
4.768.925 digits
e-mail
25-05-04