Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2183591034367182079 ~1996
2183599194367198399 ~1996
218363177174690541710 ~1998
2183632794367265599 ~1996
218364697131018818310 ~1997
2183747634367495279 ~1996
2183755194367510399 ~1996
2183772594367545199 ~1996
2183784834367569679 ~1996
218385407174708325710 ~1998
218386061174708848910 ~1998
218389811174711848910 ~1998
2183906994367813999 ~1996
218391071174712856910 ~1998
218391821131035092710 ~1997
2183922834367845679 ~1996
2184018114368036239 ~1996
2184023634368047279 ~1996
2184034914368069839 ~1996
2184061434368122879 ~1996
218407001174725600910 ~1998
218407447218407447110 ~1998
218412473131047483910 ~1997
218412767567873194310 ~1999
2184143034368286079 ~1996
Exponent Prime Factor Digits Year
2184246834368493679 ~1996
2184318834368637679 ~1996
2184369234368738479 ~1996
218450081830110307910 ~1999
2184539514369079039 ~1996
2184571194369142399 ~1996
218458423349533476910 ~1998
218461007393229812710 ~1998
2184630714369261439 ~1996
2184633834369267679 ~1996
2184672114369344239 ~1996
2184698514369397039 ~1996
2184715314369430639 ~1996
2184778794369557599 ~1996
218483533131090119910 ~1997
2184855671267216288711 ~2000
2184894611704217795911 ~2000
2184953634369907279 ~1996
218495401131097240710 ~1997
2184982371879084838311 ~2000
2185048314370096639 ~1996
218508457131105074310 ~1997
2185226514370453039 ~1996
21853021731992823768912 ~2003
2185310634370621279 ~1996
Exponent Prime Factor Digits Year
218532011174825608910 ~1998
218544691393380443910 ~1998
2185609314371218639 ~1996
2185612434371224879 ~1996
2185763394371526799 ~1996
2185799514371599039 ~1996
218583301131149980710 ~1997
218594153306031814310 ~1998
2185980714371961439 ~1996
2185995714371991439 ~1996
218609317131165590310 ~1997
218614553131168731910 ~1997
2186279634372559279 ~1996
2186304114372608239 ~1996
2186360034372720079 ~1996
218637557524730136910 ~1999
218646391218646391110 ~1998
2186688114373376239 ~1996
2186711514373423039 ~1996
218671997131203198310 ~1997
218677843218677843110 ~1998
2186829834373659679 ~1996
2186837994373675999 ~1996
218684387174947509710 ~1998
218688427743540651910 ~1999
Exponent Prime Factor Digits Year
2186899794373799599 ~1996
2186965194373930399 ~1996
218705441174964352910 ~1998
2187061794374123599 ~1996
2187092514374185039 ~1996
2187104034374208079 ~1996
2187138714374277439 ~1996
2187152394374304799 ~1996
218717311218717311110 ~1998
2187204594374409199 ~1996
2187205072143460968711 ~2000
2187256794374513599 ~1996
2187279594374559199 ~1996
2187312834374625679 ~1996
2187334194374668399 ~1996
218733763524961031310 ~1999
218736061131241636710 ~1997
2187373314374746639 ~1996
218743901131246340710 ~1997
2187504594375009199 ~1996
2187513114375026239 ~1996
2187522311268762939911 ~2000
218755601175004480910 ~1998
218756047350009675310 ~1998
2187623394375246799 ~1996
Home
5.307.017 digits
e-mail
26-01-11