Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2130800514261601039 ~1996
2130842171022804241711 ~1999
2130861834261723679 ~1996
213087221127852332710 ~1997
213099121127859472710 ~1997
2131018794262037599 ~1996
2131044714262089439 ~1996
2131049994262099999 ~1996
213106423852425692110 ~1999
213110837127866502310 ~1997
213112091170489672910 ~1998
2131255434262510879 ~1996
2131257714262515439 ~1996
213128341341005345710 ~1998
2131304514262609039 ~1996
2131312914262625839 ~1996
2131361034262722079 ~1996
2131375314262750639 ~1996
2131442034262884079 ~1996
213144917127886950310 ~1997
213145349298403488710 ~1998
2131517394263034780111 ~2001
213159173127895503910 ~1997
213160669468953471910 ~1999
2131618314263236639 ~1996
Exponent Prime Factor Digits Year
2131627914263255839 ~1996
2131641834263283679 ~1996
2131702314263404639 ~1996
213171577127902946310 ~1997
213177553468990616710 ~1999
2131793535116304472111 ~2001
2131924434263848879 ~1996
2131961634263923279 ~1996
2131969434263938879 ~1996
213209153298492814310 ~1998
2132123994264247999 ~1996
2132203914264407839 ~1996
2132233434264466879 ~1996
2132283114264566239 ~1996
213233357170586685710 ~1998
213233807554407898310 ~1999
213235681341177089710 ~1998
2132406234264812479 ~1996
213243851170595080910 ~1998
2132450994264901999 ~1996
2132460234264920479 ~1996
213254533127952719910 ~1997
213258079383864542310 ~1998
2132608914265217839 ~1996
213263833127958299910 ~1997
Exponent Prime Factor Digits Year
213264851170611880910 ~1998
2132653794265307599 ~1996
213265733127959439910 ~1997
2132671794265343599 ~1996
213269821127961892710 ~1997
2132726514265453039 ~1996
2132747394265494799 ~1996
213281539725157232710 ~1999
2132907834265815679 ~1996
2132946114265892239 ~1996
213295241127977144710 ~1997
2132953314265906639 ~1996
2133011394266022799 ~1996
213303119170642495310 ~1998
2133043794266087599 ~1996
2133151434266302879 ~1996
213315581170652464910 ~1998
213315587383968056710 ~1998
213326111170660888910 ~1998
2133274794266549599 ~1996
213342797128005678310 ~1997
213344773128006863910 ~1997
2133480071408096846311 ~2000
213353801128012280710 ~1997
2133604194267208399 ~1996
Exponent Prime Factor Digits Year
2133608394267216799 ~1996
2133653634267307279 ~1996
2133794514267589039 ~1996
2133810234267620479 ~1996
213384419170707535310 ~1998
213387197128032318310 ~1997
2133960834267921679 ~1996
2133984114267968239 ~1996
213398599213398599110 ~1998
2133996714267993439 ~1996
2134031034268062079 ~1996
2134045314268090639 ~1996
2134121034268242079 ~1996
2134185594268371199 ~1996
2134194834268389679 ~1996
2134201914268403839 ~1996
213421753128053051910 ~1997
213425197128055118310 ~1997
213429193128057515910 ~1997
213433291213433291110 ~1998
2134380594268761199 ~1996
2134462314268924639 ~1996
213447851170758280910 ~1998
2134514994269029999 ~1996
2134515594269031199 ~1996
Home
5.307.017 digits
e-mail
26-01-11