Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2316625914633251839 ~1996
2316649434633298879 ~1996
2316652434633304879 ~1996
2316694194633388399 ~1996
2316772194633544399 ~1996
2316787314633574639 ~1996
2316817434633634879 ~1996
2316823434633646879 ~1996
231685087231685087110 ~1998
2316875034633750079 ~1996
2316881994633763999 ~1996
2316904434633808879 ~1996
2316928434633856879 ~1996
2316934434633868879 ~1996
231695923231695923110 ~1998
2316968514633937039 ~1996
2316981114633962239 ~1996
2316988434633976879 ~1996
2317008234634016479 ~1996
231704573139022743910 ~1998
2317058634634117279 ~1996
2317061034634122079 ~1996
2317128234634256479 ~1996
2317138434634276879 ~1996
2317184634634369279 ~1996
Exponent Prime Factor Digits Year
2317216314634432639 ~1996
2317280394634560799 ~1996
2317330492780796588111 ~2001
2317349994634699999 ~1996
231739021139043412710 ~1998
2317421394634842799 ~1996
231744433139046659910 ~1998
2317497114634994239 ~1996
2317612794635225599 ~1996
231762539417172570310 ~1999
2317637994635275999 ~1996
231777853139066711910 ~1998
2317824834635649679 ~1996
2317952514635905039 ~1996
2318011314636022639 ~1996
2318063634636127279 ~1996
2318064234636128479 ~1996
2318089434636178879 ~1996
231810541139086324710 ~1998
2318131434636262879 ~1996
231826781139096068710 ~1998
2318281194636562399 ~1996
231831701139099020710 ~1998
2318326914636653839 ~1996
2318372394636744799 ~1996
Exponent Prime Factor Digits Year
2318415594636831199 ~1996
2318460714636921439 ~1996
2318463834636927679 ~1996
2318508234637016479 ~1996
2318517834637035679 ~1996
2318557194637114399 ~1996
2318586114637172239 ~1996
2318683794637367599 ~1996
2318770314637540639 ~1996
2318830314637660639 ~1996
231883453139130071910 ~1998
2318877834637755679 ~1996
23190262129822677060712 ~2003
231906421139143852710 ~1998
231910513139146307910 ~1998
231914377139148626310 ~1998
231917633139150579910 ~1998
2319189834638379679 ~1996
231928889185543111310 ~1998
2319291114638582239 ~1996
2319329994638659999 ~1996
2319351834638703679 ~1996
231935597139161358310 ~1998
2319435594638871199 ~1996
231946621139167972710 ~1998
Exponent Prime Factor Digits Year
2319505314639010639 ~1996
231951781139171068710 ~1998
2319561714639123439 ~1996
2319588234639176479 ~1996
2319632394639264799 ~1996
231965297185572237710 ~1998
231968579185574863310 ~1998
2319710394639420799 ~1996
2319790194639580399 ~1996
2319851394639702799 ~1996
2319860212551846231111 ~2001
2319875994639751999 ~1996
2320082514640165039 ~1996
2320091634640183279 ~1996
2320145394640290799 ~1996
2320253994640507999 ~1996
2320280034640560079 ~1996
232028453139217071910 ~1998
2320333871531420354311 ~2000
232033519232033519110 ~1998
2320338114640676239 ~1996
232034963556883911310 ~1999
232035577139221346310 ~1998
2320385394640770799 ~1996
2320414314640828639 ~1996
Home
5.187.277 digits
e-mail
25-11-17